ljy5946's picture
Update app.py
e7e03e0 verified
raw
history blame
4.68 kB
import os
import gradio as gr
import torch # 确保导入 torch,因为 phi-2 模型需要
import logging
# LangChain 新版导入方式
from langchain_chroma import Chroma
from langchain_huggingface import HuggingFaceEmbeddings
# 注意:HuggingFacePipeline 从 0.2.x 开始推荐从 langchain_huggingface 导入
# 如果遇到问题,也可以尝试从 langchain_community.llms 导入
from langchain_huggingface.llms import HuggingFacePipeline # 或者 from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
# Transformers 库
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
logging.basicConfig(level=logging.INFO) # 更好的日志级别
# 设置路径
# 确保这些路径与您的预下载模型和向量库文件夹名称匹配
VECTOR_STORE_DIR = "./vector_store"
# 将模型名称指向本地预下载的路径
MODEL_NAME = "./hf_models_cache/models--uer--gpt2-chinese-cluecorpussmall"
EMBEDDING_MODEL_NAME = "./hf_models_cache/models--sentence-transformers--paraphrase-multilingual-mpnet-base-v2"
# 1. 轻量 LLM(uer/gpt2-chinese-cluecorpussmall)
print("🔧 加载生成模型...")
try:
# 确保 tokenizer 和 model 是从正确的本地路径加载
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
)
gen_pipe = pipeline(
task="text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256,
temperature=0.5,
top_p=0.9,
do_sample=True,
)
llm = HuggingFacePipeline(pipeline=gen_pipe)
print("✅ 生成模型加载成功。")
except Exception as e:
logging.error(f"加载生成模型失败: {e}", exc_info=True)
# 如果加载失败,可以考虑在这里退出或者给一个友好的错误提示
llm = None # 确保 llm 为 None,避免后续报错
print("❌ 生成模型加载失败,应用可能无法正常工作。")
# 2. 向量库和嵌入模型
print("📚 加载向量库和嵌入模型...")
try:
embeddings = HuggingFaceEmbeddings(
model_name=EMBEDDING_MODEL_NAME # 指向本地预下载的嵌入模型路径
)
vectordb = Chroma(persist_directory=VECTOR_STORE_DIR, embedding_function=embeddings)
print("✅ 向量库加载成功。")
except Exception as e:
logging.error(f"加载向量库失败: {e}", exc_info=True)
vectordb = None # 确保 vectordb 为 None
print("❌ 向量库加载失败,RAG功能将无法使用。")
# 3. RAG 问答链
qa_chain = None
if llm and vectordb: # 只有当LLM和向量库都成功加载时才构建RAG链
try:
retriever = vectordb.as_retriever(search_kwargs={"k": 3})
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
print("✅ RAG问答链构建成功。")
except Exception as e:
logging.error(f"构建RAG问答链失败: {e}", exc_info=True)
print("❌ RAG问答链构建失败。")
# 4. 业务函数
def qa_fn(query):
if not query.strip():
return "❌ 请输入问题内容。"
if not qa_chain: # 检查 qa_chain 是否已成功构建
return "⚠️ 问答系统未完全加载,请稍后再试或检查日志。"
try:
result = qa_chain({"query": query})
answer = result["result"]
sources = result.get("source_documents", [])
sources_text = "\n\n".join(
[f"【片段 {i+1}】\n" + doc.page_content for i, doc in enumerate(sources)]
)
return f"📌 回答:{answer.strip()}\n\n📚 参考:\n{sources_text}"
except Exception as e:
logging.exception("问答失败:%s", e)
return f"❌ 出现错误:{str(e)}\n请检查日志获取更多信息。"
# 5. Gradio UI
with gr.Blocks(title="数学知识问答助手", theme=gr.themes.Base()) as demo:
gr.Markdown("## 📘 数学知识问答助手\n输入教材相关问题,例如:“什么是函数的定义域?”")
with gr.Row():
query_input = gr.Textbox(label="问题", placeholder="请输入你的问题", lines=2)
output_box = gr.Textbox(label="回答", lines=15)
submit_btn = gr.Button("提问")
submit_btn.click(fn=qa_fn, inputs=query_input, outputs=output_box)
gr.Markdown("---\n模型:uer/gpt2-chinese-cluecorpussmall + Chroma RAG | Powered by Hugging Face Spaces")
if __name__ == "__main__":
demo.launch()