Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
import logging | |
# ==== ① 向量检索 & LLM ==== | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain.chains import RetrievalQA | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
from langchain.llms import HuggingFacePipeline | |
logging.basicConfig(level=logging.INFO) | |
# --- 1) 加载本地向量库 --- | |
embedding_model = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2" | |
) | |
vector_store = Chroma( | |
persist_directory="vector_store", | |
embedding_function=embedding_model, | |
) | |
# --- 2) 加载(较轻量)LLM --- | |
# 如果 7B 跑不动,可以先用 openchat-mini 试试 | |
model_id = "openchat/openchat-3.5-0106" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype="auto", | |
) | |
gen_pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_new_tokens=512, | |
temperature=0.7, | |
top_p=0.9, | |
) | |
llm = HuggingFacePipeline(pipeline=gen_pipe) | |
# --- 3) 构建 RAG 问答链 --- | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=vector_store.as_retriever(search_kwargs={"k": 3}), | |
) | |
# ==== ② Gradio UI ==== | |
def simple_qa(user_query): | |
"""智能问答:检索 + 生成(单轮演示版)""" | |
if not user_query.strip(): | |
return "⚠️ 请输入学习问题,例如:什么是定积分?" | |
try: | |
answer = qa_chain.run(user_query) | |
return answer | |
except Exception as e: | |
logging.error(f"问答失败: {e}") | |
return "抱歉,暂时无法回答,请稍后再试。" | |
def placeholder_fn(*args, **kwargs): | |
return "功能尚未实现,请等待后续更新。" | |
with gr.Blocks() as demo: | |
gr.Markdown("# 智能学习助手 v2.0\n— 大学生专业课学习助手 —") | |
with gr.Tabs(): | |
# ---------- 智能问答 ---------- | |
with gr.TabItem("智能问答"): | |
gr.Markdown("> **示例:** 什么是函数的定义域?") | |
chatbot = gr.Chatbot() | |
user_msg = gr.Textbox(placeholder="输入您的学习问题,然后按回车或点击发送") | |
send_btn = gr.Button("发送") | |
# 单轮:把问答显示在 Chatbot | |
def update_chat(message, chat_history): | |
reply = simple_qa(message) | |
chat_history.append((message, reply)) | |
return "", chat_history | |
send_btn.click( | |
fn=update_chat, | |
inputs=[user_msg, chatbot], | |
outputs=[user_msg, chatbot], | |
) | |
user_msg.submit( | |
fn=update_chat, | |
inputs=[user_msg, chatbot], | |
outputs=[user_msg, chatbot], | |
) | |
# ---------- 生成学习大纲 ---------- | |
with gr.TabItem("生成学习大纲"): | |
gr.Markdown("(学习大纲模块,待开发)") | |
topic_input = gr.Textbox(label="主题/章节名称", placeholder="如:线性代数 第五章 特征值") | |
gen_outline_btn = gr.Button("生成大纲") | |
gen_outline_btn.click(placeholder_fn, inputs=topic_input, outputs=topic_input) | |
# ---------- 自动出题 ---------- | |
with gr.TabItem("自动出题"): | |
gr.Markdown("(出题模块,待开发)") | |
topic2 = gr.Textbox(label="知识点/主题", placeholder="如:高数 第三章 多元函数") | |
difficulty2 = gr.Dropdown(choices=["简单", "中等", "困难"], label="难度") | |
count2 = gr.Slider(1, 10, step=1, label="题目数量") | |
gen_q_btn = gr.Button("开始出题") | |
gen_q_btn.click(placeholder_fn, inputs=[topic2, difficulty2, count2], outputs=topic2) | |
# ---------- 答案批改 ---------- | |
with gr.TabItem("答案批改"): | |
gr.Markdown("(批改模块,待开发)") | |
std_ans = gr.Textbox(label="标准答案", lines=5) | |
user_ans = gr.Textbox(label="您的作答", lines=5) | |
grade_btn = gr.Button("开始批改") | |
grade_btn.click(placeholder_fn, inputs=[user_ans, std_ans], outputs=user_ans) | |
gr.Markdown("---\n由 HuggingFace 提供支持 • 版本 2.0") | |
if __name__ == "__main__": | |
demo.launch() | |