Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,120 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def placeholder_fn(*args, **kwargs):
|
6 |
return "功能尚未实现,请等待后续更新。"
|
7 |
|
8 |
with gr.Blocks() as demo:
|
9 |
-
gr.Markdown("#
|
10 |
|
11 |
with gr.Tabs():
|
|
|
12 |
with gr.TabItem("智能问答"):
|
13 |
-
gr.Markdown("
|
14 |
-
|
15 |
-
user_msg = gr.Textbox(placeholder="
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
with gr.TabItem("生成学习大纲"):
|
20 |
-
gr.Markdown("
|
21 |
-
topic_input = gr.Textbox(label="主题/章节名称", placeholder="如:线性代数 第五章
|
22 |
-
|
23 |
-
|
24 |
|
|
|
25 |
with gr.TabItem("自动出题"):
|
26 |
-
gr.Markdown("
|
27 |
topic2 = gr.Textbox(label="知识点/主题", placeholder="如:高数 第三章 多元函数")
|
28 |
-
difficulty2 = gr.Dropdown(choices=["简单", "中等", "困难"], label="
|
29 |
-
count2 = gr.Slider(
|
30 |
-
|
31 |
-
|
32 |
-
gen2_button.click(fn=placeholder_fn, inputs=[topic2, difficulty2, count2], outputs=topic2)
|
33 |
|
|
|
34 |
with gr.TabItem("答案批改"):
|
35 |
-
gr.Markdown("
|
36 |
-
std_ans = gr.Textbox(label="标准答案", lines=5
|
37 |
-
user_ans = gr.Textbox(label="您的作答", lines=5
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
gr.Markdown("---\nPowered by HuggingFace • v2.0")
|
43 |
|
44 |
if __name__ == "__main__":
|
45 |
demo.launch()
|
|
|
1 |
+
# app.py
|
2 |
import gradio as gr
|
3 |
+
import logging
|
4 |
|
5 |
+
# ==== ① 向量检索 & LLM ====
|
6 |
+
from langchain_community.vectorstores import Chroma
|
7 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
10 |
+
from langchain.llms import HuggingFacePipeline
|
11 |
+
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
|
14 |
+
# --- 1) 加载本地向量库 ---
|
15 |
+
embedding_model = HuggingFaceEmbeddings(
|
16 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
17 |
+
)
|
18 |
+
vector_store = Chroma(
|
19 |
+
persist_directory="vector_store",
|
20 |
+
embedding_function=embedding_model,
|
21 |
+
)
|
22 |
+
|
23 |
+
# --- 2) 加载(较轻量)LLM ---
|
24 |
+
# 如果 7B 跑不动,可以先用 openchat-mini 试试
|
25 |
+
model_id = "openchat/openchat-3.5-0106"
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(
|
28 |
+
model_id,
|
29 |
+
device_map="auto",
|
30 |
+
torch_dtype="auto",
|
31 |
+
)
|
32 |
+
gen_pipe = pipeline(
|
33 |
+
"text-generation",
|
34 |
+
model=model,
|
35 |
+
tokenizer=tokenizer,
|
36 |
+
max_new_tokens=512,
|
37 |
+
temperature=0.7,
|
38 |
+
top_p=0.9,
|
39 |
+
)
|
40 |
+
llm = HuggingFacePipeline(pipeline=gen_pipe)
|
41 |
+
|
42 |
+
# --- 3) 构建 RAG 问答链 ---
|
43 |
+
qa_chain = RetrievalQA.from_chain_type(
|
44 |
+
llm=llm,
|
45 |
+
chain_type="stuff",
|
46 |
+
retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
|
47 |
+
)
|
48 |
+
|
49 |
+
# ==== ② Gradio UI ====
|
50 |
+
|
51 |
+
def simple_qa(user_query):
|
52 |
+
"""智能问答:检索 + 生成(单轮演示版)"""
|
53 |
+
if not user_query.strip():
|
54 |
+
return "⚠️ 请输入学习问题,例如:什么是定积分?"
|
55 |
+
try:
|
56 |
+
answer = qa_chain.run(user_query)
|
57 |
+
return answer
|
58 |
+
except Exception as e:
|
59 |
+
logging.error(f"问答失败: {e}")
|
60 |
+
return "抱歉,暂时无法回答,请稍后再试。"
|
61 |
|
62 |
def placeholder_fn(*args, **kwargs):
|
63 |
return "功能尚未实现,请等待后续更新。"
|
64 |
|
65 |
with gr.Blocks() as demo:
|
66 |
+
gr.Markdown("# 智能学习助手 v2.0\n— 大学生专业课学习助手 —")
|
67 |
|
68 |
with gr.Tabs():
|
69 |
+
# ---------- 智能问答 ----------
|
70 |
with gr.TabItem("智能问答"):
|
71 |
+
gr.Markdown("> **示例:** 什么是函数的定义域?")
|
72 |
+
chatbot = gr.Chatbot()
|
73 |
+
user_msg = gr.Textbox(placeholder="输入您的学习问题,然后按回车或点击发送")
|
74 |
+
send_btn = gr.Button("发送")
|
75 |
+
|
76 |
+
# 单轮:把问答显示在 Chatbot
|
77 |
+
def update_chat(message, chat_history):
|
78 |
+
reply = simple_qa(message)
|
79 |
+
chat_history.append((message, reply))
|
80 |
+
return "", chat_history
|
81 |
|
82 |
+
send_btn.click(
|
83 |
+
fn=update_chat,
|
84 |
+
inputs=[user_msg, chatbot],
|
85 |
+
outputs=[user_msg, chatbot],
|
86 |
+
)
|
87 |
+
user_msg.submit(
|
88 |
+
fn=update_chat,
|
89 |
+
inputs=[user_msg, chatbot],
|
90 |
+
outputs=[user_msg, chatbot],
|
91 |
+
)
|
92 |
+
|
93 |
+
# ---------- 生成学习大纲 ----------
|
94 |
with gr.TabItem("生成学习大纲"):
|
95 |
+
gr.Markdown("(学习大纲模块,待开发)")
|
96 |
+
topic_input = gr.Textbox(label="主题/章节名称", placeholder="如:线性代数 第五章 特征值")
|
97 |
+
gen_outline_btn = gr.Button("生成大纲")
|
98 |
+
gen_outline_btn.click(placeholder_fn, inputs=topic_input, outputs=topic_input)
|
99 |
|
100 |
+
# ---------- 自动出题 ----------
|
101 |
with gr.TabItem("自动出题"):
|
102 |
+
gr.Markdown("(出题模块,待开发)")
|
103 |
topic2 = gr.Textbox(label="知识点/主题", placeholder="如:高数 第三章 多元函数")
|
104 |
+
difficulty2 = gr.Dropdown(choices=["简单", "中等", "困难"], label="难度")
|
105 |
+
count2 = gr.Slider(1, 10, step=1, label="题目数量")
|
106 |
+
gen_q_btn = gr.Button("开始出题")
|
107 |
+
gen_q_btn.click(placeholder_fn, inputs=[topic2, difficulty2, count2], outputs=topic2)
|
|
|
108 |
|
109 |
+
# ---------- 答案批改 ----------
|
110 |
with gr.TabItem("答案批改"):
|
111 |
+
gr.Markdown("(批改模块,待开发)")
|
112 |
+
std_ans = gr.Textbox(label="标准答案", lines=5)
|
113 |
+
user_ans = gr.Textbox(label="您的作答", lines=5)
|
114 |
+
grade_btn = gr.Button("开始批改")
|
115 |
+
grade_btn.click(placeholder_fn, inputs=[user_ans, std_ans], outputs=user_ans)
|
116 |
+
|
117 |
+
gr.Markdown("---\n由 HuggingFace 提供支持 • 版本 2.0")
|
|
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
demo.launch()
|