super_agent / app.py
lezaf
Specify langfuse version in requirements.txt
fb5f7c4
"""
NOTE:
- If USE_RATE_LIMITER env variable is True, the agent will use a rate limiter to avoid hitting API limits.
"""
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from agent import build_agent
from langchain_core.messages import HumanMessage
from langfuse.langchain import CallbackHandler
langfuse_handler = CallbackHandler()
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
files_url = f"{DEFAULT_API_URL}/files/" # Needs task_id
# --- Basic Agent Definition ---
class SuperAgent:
def __init__(self):
print("SuperAgent initialized.")
self.agent = build_agent(provider="google") # Change to "hf" for HuggingFace
self.recursion_limit = os.getenv("RECURSION_LIMIT", "25")
def __call__(self, data: dict) -> str:
"""
Args:
data (str): A string containing the question to be answered.
Schema: {
task_id: str,
question: str,
file_name: str,
}
"""
# Quick validation of input data (TODO: Use pydantic for schema)
required_keys = ["question", "task_id", "file_name"]
if not all(k in data for k in required_keys):
raise ValueError("Input data must contain 'question', 'task_id', and 'file_name'.")
task_id, question, file_name = data["task_id"], data["question"], data["file_name"]
print(f"Agent received question (first 50 chars): {question[:50]}...")
# Build HumanMessage
content = [
{"type": "text", "text": question}
]
if file_name != "":
file_url = f"{files_url}{task_id}"
if file_name.endswith((".png", ".jpg", ".jpeg")):
content.append({"type": "image_url", "image_url": {"url": file_url}})
elif file_name.endswith((".py")):
# For code files, we can just send the text content
try:
response = requests.get(file_url, timeout=15)
response.raise_for_status()
code_content = response.text
content.append({"type": "text", "text": code_content})
except Exception as e:
print(f"Error fetching code file: {e}")
elif file_name.endswith((".xlsx", ".xls")):
content.append({"type": "text", "text": "Excel file url: " + file_url})
elif file_name.endswith((".mp3", ".wav")):
content.append({"type": "text", "text": "Audio file url: " + file_url})
else:
raise ValueError(f"Unsupported file type for file: {file_name}")
human_msg = HumanMessage(content=content)
try:
answer = self.agent.invoke(
{"messages": [human_msg]},
config={"callbacks": [langfuse_handler], "recursion_limit": self.recursion_limit}
)
# for message in answer["messages"]:
# message.pretty_print()
# Result already printed inside assistant() node
except Exception as e:
print(f"Error: {e}")
return answer["messages"][-1].content
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the SuperAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = SuperAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# Read excluded task IDs from file
excluded_tasks = set()
with open("excluded_tasks.txt", "r") as f:
for line in f:
task_id = line.strip()
if task_id:
excluded_tasks.add(task_id)
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for idx, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
print(f"[{idx+1}/{len(questions_data)}]", end=" ")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
# Skip excluded tasks
if task_id in excluded_tasks:
print(f"Skipping excluded task: {task_id}")
continue
try:
submitted_answer = agent(item)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
# Print the answer for debugging
# print the timestamp
print(f"Task ID: {task_id}, Submitted Answer: {submitted_answer[:50]}")
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# Read the app description from markdown file
with open("description.md", "r", encoding="utf-8") as f:
description_md = f.read()
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Super Agent Evaluation Runner")
gr.Markdown(description_md)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=True)