Spaces:
Running
Running
""" | |
NOTE: | |
- If USE_RATE_LIMITER env variable is True, the agent will use a rate limiter to avoid hitting API limits. | |
""" | |
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from agent import build_agent | |
from langchain_core.messages import HumanMessage | |
from langfuse.langchain import CallbackHandler | |
langfuse_handler = CallbackHandler() | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
questions_url = f"{DEFAULT_API_URL}/questions" | |
submit_url = f"{DEFAULT_API_URL}/submit" | |
files_url = f"{DEFAULT_API_URL}/files/" # Needs task_id | |
# --- Basic Agent Definition --- | |
class SuperAgent: | |
def __init__(self): | |
print("SuperAgent initialized.") | |
self.agent = build_agent(provider="google") # Change to "hf" for HuggingFace | |
self.recursion_limit = os.getenv("RECURSION_LIMIT", "25") | |
def __call__(self, data: dict) -> str: | |
""" | |
Args: | |
data (str): A string containing the question to be answered. | |
Schema: { | |
task_id: str, | |
question: str, | |
file_name: str, | |
} | |
""" | |
# Quick validation of input data (TODO: Use pydantic for schema) | |
required_keys = ["question", "task_id", "file_name"] | |
if not all(k in data for k in required_keys): | |
raise ValueError("Input data must contain 'question', 'task_id', and 'file_name'.") | |
task_id, question, file_name = data["task_id"], data["question"], data["file_name"] | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
# Build HumanMessage | |
content = [ | |
{"type": "text", "text": question} | |
] | |
if file_name != "": | |
file_url = f"{files_url}{task_id}" | |
if file_name.endswith((".png", ".jpg", ".jpeg")): | |
content.append({"type": "image_url", "image_url": {"url": file_url}}) | |
elif file_name.endswith((".py")): | |
# For code files, we can just send the text content | |
try: | |
response = requests.get(file_url, timeout=15) | |
response.raise_for_status() | |
code_content = response.text | |
content.append({"type": "text", "text": code_content}) | |
except Exception as e: | |
print(f"Error fetching code file: {e}") | |
elif file_name.endswith((".xlsx", ".xls")): | |
content.append({"type": "text", "text": "Excel file url: " + file_url}) | |
elif file_name.endswith((".mp3", ".wav")): | |
content.append({"type": "text", "text": "Audio file url: " + file_url}) | |
else: | |
raise ValueError(f"Unsupported file type for file: {file_name}") | |
human_msg = HumanMessage(content=content) | |
try: | |
answer = self.agent.invoke( | |
{"messages": [human_msg]}, | |
config={"callbacks": [langfuse_handler], "recursion_limit": self.recursion_limit} | |
) | |
# for message in answer["messages"]: | |
# message.pretty_print() | |
# Result already printed inside assistant() node | |
except Exception as e: | |
print(f"Error: {e}") | |
return answer["messages"][-1].content | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the SuperAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = SuperAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# Read excluded task IDs from file | |
excluded_tasks = set() | |
with open("excluded_tasks.txt", "r") as f: | |
for line in f: | |
task_id = line.strip() | |
if task_id: | |
excluded_tasks.add(task_id) | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for idx, item in enumerate(questions_data): | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
print(f"[{idx+1}/{len(questions_data)}]", end=" ") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
# Skip excluded tasks | |
if task_id in excluded_tasks: | |
print(f"Skipping excluded task: {task_id}") | |
continue | |
try: | |
submitted_answer = agent(item) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
# Print the answer for debugging | |
# print the timestamp | |
print(f"Task ID: {task_id}, Submitted Answer: {submitted_answer[:50]}") | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# Read the app description from markdown file | |
with open("description.md", "r", encoding="utf-8") as f: | |
description_md = f.read() | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Super Agent Evaluation Runner") | |
gr.Markdown(description_md) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=True) |