File size: 11,322 Bytes
448903c
 
799013a
448903c
 
10e9b7d
 
eccf8e4
7d65c66
3c4371f
448903c
 
 
 
 
10e9b7d
d59f015
e80aab9
3db6293
448903c
 
 
e80aab9
31243f4
448903c
31243f4
448903c
 
799013a
448903c
08283c8
448903c
 
 
 
 
 
 
 
 
 
08283c8
 
448903c
 
 
 
31243f4
448903c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b31030
 
 
 
 
 
448903c
 
 
 
 
 
799013a
448903c
 
 
 
 
 
 
 
 
 
 
4021bf3
b90251f
31243f4
448903c
31243f4
 
7d65c66
b177367
3c4371f
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
b177367
31243f4
448903c
31243f4
3c4371f
31243f4
b177367
36ed51a
c1fd3d2
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
e80aab9
31243f4
 
3c4371f
 
7d65c66
3c4371f
7d65c66
31243f4
 
e80aab9
dfad45c
 
 
 
 
 
 
 
b177367
7d65c66
 
3c4371f
3b31030
31243f4
 
3b31030
 
 
31243f4
 
 
448903c
dfad45c
 
 
448903c
 
31243f4
448903c
 
7d65c66
 
448903c
6aab838
3b31030
5d4f8e9
31243f4
 
7d65c66
31243f4
 
3c4371f
31243f4
 
b177367
7d65c66
3c4371f
31243f4
e80aab9
7d65c66
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
fb5f7c4
 
 
e80aab9
 
 
08283c8
fb5f7c4
e80aab9
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3b31030
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""
NOTE:
    - If USE_RATE_LIMITER env variable is True, the agent will use a rate limiter to avoid hitting API limits.
"""

import os
import gradio as gr
import requests
import inspect
import pandas as pd
from agent import build_agent
from langchain_core.messages import HumanMessage
from langfuse.langchain import CallbackHandler

langfuse_handler = CallbackHandler()

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
questions_url = f"{DEFAULT_API_URL}/questions"
submit_url = f"{DEFAULT_API_URL}/submit"
files_url = f"{DEFAULT_API_URL}/files/" # Needs task_id

# --- Basic Agent Definition ---
class SuperAgent:
    def __init__(self):
        print("SuperAgent initialized.")
        self.agent = build_agent(provider="google")  # Change to "hf" for HuggingFace
        self.recursion_limit = os.getenv("RECURSION_LIMIT", "25")

    def __call__(self, data: dict) -> str:
        """
        Args:
            data (str): A string containing the question to be answered.
                Schema: {
                    task_id: str,
                    question: str,
                    file_name: str,
                }
        """
        # Quick validation of input data (TODO: Use pydantic for schema)
        required_keys = ["question", "task_id", "file_name"]
        if not all(k in data for k in required_keys):
            raise ValueError("Input data must contain 'question', 'task_id', and 'file_name'.")
        
        task_id, question, file_name = data["task_id"], data["question"], data["file_name"]
        
        print(f"Agent received question (first 50 chars): {question[:50]}...")

        # Build HumanMessage
        content = [
            {"type": "text", "text": question}
        ]
        
        if file_name != "":
            file_url = f"{files_url}{task_id}"
        
            if file_name.endswith((".png", ".jpg", ".jpeg")):
                content.append({"type": "image_url", "image_url": {"url": file_url}})

            elif file_name.endswith((".py")):
                # For code files, we can just send the text content
                try:
                    response = requests.get(file_url, timeout=15)
                    response.raise_for_status()
                    code_content = response.text

                    content.append({"type": "text", "text": code_content})
                except Exception as e:
                    print(f"Error fetching code file: {e}")

            elif file_name.endswith((".xlsx", ".xls")):
                content.append({"type": "text", "text": "Excel file url: " + file_url})
            
            elif file_name.endswith((".mp3", ".wav")):
                content.append({"type": "text", "text": "Audio file url: " + file_url})

            else:
                raise ValueError(f"Unsupported file type for file: {file_name}")
        
        human_msg = HumanMessage(content=content)

        try:
            answer = self.agent.invoke(
                {"messages": [human_msg]},
                config={"callbacks": [langfuse_handler], "recursion_limit": self.recursion_limit}
            )

            # for message in answer["messages"]:
            #     message.pretty_print()
            # Result already printed inside assistant() node
        except Exception as e:
            print(f"Error: {e}")

        return answer["messages"][-1].content



def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the SuperAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = SuperAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # Read excluded task IDs from file
    excluded_tasks = set()
    with open("excluded_tasks.txt", "r") as f:
        for line in f:
            task_id = line.strip()
            if task_id:
                excluded_tasks.add(task_id)

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for idx, item in enumerate(questions_data):
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        print(f"[{idx+1}/{len(questions_data)}]", end=" ")

        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue

        # Skip excluded tasks
        if task_id in excluded_tasks:
            print(f"Skipping excluded task: {task_id}")
            continue

        try:
            submitted_answer = agent(item)

            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})

            # Print the answer for debugging
            # print the timestamp
            print(f"Task ID: {task_id}, Submitted Answer: {submitted_answer[:50]}")
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# Read the app description from markdown file
with open("description.md", "r", encoding="utf-8") as f:
    description_md = f.read()

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Super Agent Evaluation Runner")
    gr.Markdown(description_md)

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=True)