Spaces:
Running
Running
import os | |
from loguru import logger | |
from pipecat.audio.vad.silero import SileroVADAnalyzer | |
from pipecat.pipeline.pipeline import Pipeline | |
from pipecat.pipeline.runner import PipelineRunner | |
from pipecat.pipeline.task import PipelineParams, PipelineTask | |
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext | |
# from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter | |
from pipecat.services.ollama.llm import OLLamaLLMService | |
# from pipecat.services.fish.tts import FishAudioTTSService | |
# from pipecat.services.xtts.tts import XTTSService | |
from pipecat.transcriptions.language import Language | |
# from service.Dia.tts import DiaTTSService | |
from pipecat.processors.frameworks.rtvi import RTVIConfig, RTVIObserver, RTVIProcessor | |
from pipecat.serializers.protobuf import ProtobufFrameSerializer | |
from pipecat.transports.network.fastapi_websocket import ( | |
FastAPIWebsocketParams, | |
FastAPIWebsocketTransport, | |
) | |
from pipecat.services.whisper.stt import WhisperSTTService | |
from pipecat.transports.network.websocket_server import ( | |
WebsocketServerParams, | |
WebsocketServerTransport, | |
) | |
import aiohttp | |
from dotenv import load_dotenv | |
from service.Kokoro.tts import KokoroTTSService | |
# from service.orpheus.tts import OrpheusTTSService | |
# from service.chatterbot.tts import ChatterboxTTSService | |
# from pipecat.utils.tracing.setup import setup_tracing | |
SYSTEM_INSTRUCTION = f""" | |
"You are Gemini Chatbot, a friendly, helpful robot. | |
Your goal is to demonstrate your capabilities in a succinct way. | |
Your output will be converted to audio so don't include special characters in your answers. | |
Respond to what the user said in a creative and helpful way. Keep your responses brief. One or two sentences at most. | |
""" | |
load_dotenv(override=True) | |
# IS_TRACING_ENABLED = bool(os.getenv("ENABLE_TRACING")) | |
# # Initialize tracing if enabled | |
# if IS_TRACING_ENABLED: | |
# # Create the exporter | |
# otlp_exporter = OTLPSpanExporter() | |
# # Set up tracing with the exporter | |
# setup_tracing( | |
# service_name="pipecat-demo", | |
# exporter=otlp_exporter, | |
# console_export=bool(os.getenv("OTEL_CONSOLE_EXPORT")), | |
# ) | |
# logger.info("OpenTelemetry tracing initialized") | |
async def run_bot_websocket_server(websocket_client): | |
try: | |
ws_transport = FastAPIWebsocketTransport( | |
websocket=websocket_client, | |
params=FastAPIWebsocketParams( | |
audio_in_enabled=True, | |
audio_out_enabled=True, | |
add_wav_header=False, | |
vad_analyzer=SileroVADAnalyzer(), | |
serializer=ProtobufFrameSerializer(), | |
), | |
) | |
stt = WhisperSTTService( | |
model="tiny", | |
device="cpu", | |
compute_type="default", | |
language="en", | |
) | |
llm = OLLamaLLMService( | |
model="smollm:latest", | |
) | |
context = OpenAILLMContext( | |
[ | |
{"role": "system", "content": SYSTEM_INSTRUCTION}, | |
{ | |
"role": "user", | |
"content": "Start by greeting the user warmly and introducing yourself.", | |
}, | |
] | |
) | |
context_aggregator = llm.create_context_aggregator(context) | |
rtvi = RTVIProcessor(config=RTVIConfig(config=[])) | |
TTS = KokoroTTSService( | |
model_path=os.path.join( | |
os.path.dirname(__file__), "assets", "kokoro-v1.0.int8.onnx" | |
), | |
voices_path=os.path.join( | |
os.path.dirname(__file__), "assets", "voices.json" | |
), | |
voice_id="af", | |
sample_rate=16000, | |
) | |
pipeline = Pipeline( | |
[ | |
ws_transport.input(), | |
rtvi, | |
stt, | |
context_aggregator.user(), | |
llm, | |
TTS, | |
ws_transport.output(), | |
context_aggregator.assistant(), | |
] | |
) | |
task = PipelineTask( | |
pipeline, | |
params=PipelineParams( | |
enable_metrics=True, | |
allow_interruptions=True, | |
enable_usage_metrics=True, | |
), | |
enable_tracing=False, | |
conversation_id="test", | |
observers=[RTVIObserver(rtvi)], | |
) | |
async def on_client_ready(rtvi): | |
logger.info("Pipecat client ready.") | |
await rtvi.set_bot_ready() | |
await task.queue_frames([context_aggregator.user().get_context_frame()]) | |
async def on_client_connected(transport, client): | |
logger.info("Pipecat Client connected") | |
async def on_client_disconnected(transport, client): | |
logger.info("Pipecat Client disconnected") | |
await task.cancel() | |
async def on_session_timeout(transport, client): | |
logger.info(f"Entering in timeout for {client.remote_address}") | |
await task.cancel() | |
runner = PipelineRunner() | |
await runner.run(task) | |
except Exception as e: | |
logger.exception("Error in run_bot_websocket_server") | |