Spaces:
Running
Running
File size: 5,398 Bytes
8362005 2a03c9d 8362005 24352e2 8362005 24352e2 8362005 24352e2 8362005 24352e2 8362005 24352e2 8362005 24352e2 8362005 24352e2 7b20468 1e39d10 7b20468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import os
from loguru import logger
from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
# from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from pipecat.services.ollama.llm import OLLamaLLMService
# from pipecat.services.fish.tts import FishAudioTTSService
# from pipecat.services.xtts.tts import XTTSService
from pipecat.transcriptions.language import Language
# from service.Dia.tts import DiaTTSService
from pipecat.processors.frameworks.rtvi import RTVIConfig, RTVIObserver, RTVIProcessor
from pipecat.serializers.protobuf import ProtobufFrameSerializer
from pipecat.transports.network.fastapi_websocket import (
FastAPIWebsocketParams,
FastAPIWebsocketTransport,
)
from pipecat.services.whisper.stt import WhisperSTTService
from pipecat.transports.network.websocket_server import (
WebsocketServerParams,
WebsocketServerTransport,
)
import aiohttp
from dotenv import load_dotenv
from service.Kokoro.tts import KokoroTTSService
# from service.orpheus.tts import OrpheusTTSService
# from service.chatterbot.tts import ChatterboxTTSService
# from pipecat.utils.tracing.setup import setup_tracing
SYSTEM_INSTRUCTION = f"""
"You are Gemini Chatbot, a friendly, helpful robot.
Your goal is to demonstrate your capabilities in a succinct way.
Your output will be converted to audio so don't include special characters in your answers.
Respond to what the user said in a creative and helpful way. Keep your responses brief. One or two sentences at most.
"""
load_dotenv(override=True)
# IS_TRACING_ENABLED = bool(os.getenv("ENABLE_TRACING"))
# # Initialize tracing if enabled
# if IS_TRACING_ENABLED:
# # Create the exporter
# otlp_exporter = OTLPSpanExporter()
# # Set up tracing with the exporter
# setup_tracing(
# service_name="pipecat-demo",
# exporter=otlp_exporter,
# console_export=bool(os.getenv("OTEL_CONSOLE_EXPORT")),
# )
# logger.info("OpenTelemetry tracing initialized")
async def run_bot_websocket_server(websocket_client):
try:
ws_transport = FastAPIWebsocketTransport(
websocket=websocket_client,
params=FastAPIWebsocketParams(
audio_in_enabled=True,
audio_out_enabled=True,
add_wav_header=False,
vad_analyzer=SileroVADAnalyzer(),
serializer=ProtobufFrameSerializer(),
),
)
stt = WhisperSTTService(
model="tiny",
device="cpu",
compute_type="default",
language="en",
)
llm = OLLamaLLMService(
model="smollm:latest",
)
context = OpenAILLMContext(
[
{"role": "system", "content": SYSTEM_INSTRUCTION},
{
"role": "user",
"content": "Start by greeting the user warmly and introducing yourself.",
},
]
)
context_aggregator = llm.create_context_aggregator(context)
rtvi = RTVIProcessor(config=RTVIConfig(config=[]))
TTS = KokoroTTSService(
model_path=os.path.join(
os.path.dirname(__file__), "assets", "kokoro-v1.0.int8.onnx"
),
voices_path=os.path.join(
os.path.dirname(__file__), "assets", "voices.json"
),
voice_id="af",
sample_rate=16000,
)
pipeline = Pipeline(
[
ws_transport.input(),
rtvi,
stt,
context_aggregator.user(),
llm,
TTS,
ws_transport.output(),
context_aggregator.assistant(),
]
)
task = PipelineTask(
pipeline,
params=PipelineParams(
enable_metrics=True,
allow_interruptions=True,
enable_usage_metrics=True,
),
enable_tracing=False,
conversation_id="test",
observers=[RTVIObserver(rtvi)],
)
@rtvi.event_handler("on_client_ready")
async def on_client_ready(rtvi):
logger.info("Pipecat client ready.")
await rtvi.set_bot_ready()
await task.queue_frames([context_aggregator.user().get_context_frame()])
@ws_transport.event_handler("on_client_connected")
async def on_client_connected(transport, client):
logger.info("Pipecat Client connected")
@ws_transport.event_handler("on_client_disconnected")
async def on_client_disconnected(transport, client):
logger.info("Pipecat Client disconnected")
await task.cancel()
@ws_transport.event_handler("on_session_timeout")
async def on_session_timeout(transport, client):
logger.info(f"Entering in timeout for {client.remote_address}")
await task.cancel()
runner = PipelineRunner()
await runner.run(task)
except Exception as e:
logger.exception("Error in run_bot_websocket_server")
|