File size: 16,461 Bytes
60ec0e8 84f4310 60ec0e8 5d255b5 60ec0e8 5d255b5 60ec0e8 84f4310 d9c3ea8 7ae7ed2 d9c3ea8 84f4310 d9c3ea8 84f4310 60ec0e8 84f4310 5d255b5 60ec0e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import os, sys
from enum import Enum
import gradio as gr
import requests
import inspect
import subprocess
import dateparser
from bs4 import BeautifulSoup
import regex
import pandas as pd
import torch
from functools import lru_cache
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from smolagents import PromptTemplates, CodeAgent, WebSearchTool, WikipediaSearchTool, VisitWebpageTool, PythonInterpreterTool
import smolagents.tools as _tools
from smolagents.models import ChatMessage
# from huggingface_hub import InferenceClient, hf_hub_download
subprocess.run(["playwright", "install"], check=True)
print(dir(_tools))
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# class LocalLLM:
# def __init__(self, pipe):
# self.pipe = pipe
# def generate(self, prompt, **kwargs):
# unsupported_keys = ["stop_sequences"] # Remove keys not accepted by HF pipelines
# cleaned_kwargs = {k: v for k, v in kwargs.items() if k not in unsupported_keys}
# # print(f"🧪 kwargs cleaned: {cleaned_kwargs.keys()}")
# try:
# outputs = self.pipe(prompt, **cleaned_kwargs)
# # print(f"🧪 Raw output from pipe: {outputs}")
# if isinstance(outputs, list) and isinstance(outputs[0], dict):
# out = outputs[0]["generated_text"]
# elif isinstance(outputs, list):
# out = outputs[0] # fallback if it's just a list of strings
# else:
# out = str(outputs)
# print("🧪 Final object to return:", type(out), out[:100])
# return {'role': 'assistant', 'content': [{'type':'text', 'text': out}]}
# except Exception as e:
# print(f"❌ Error in LocalLLM.generate(): {e}")
# raise
def check_token_access():
token = os.environ.get("HF_TOKEN", "")
if not token:
print("❌ No token found")
return
headers = {"Authorization": f"Bearer {token}"}
url = "https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/resolve/main/config.json"
try:
r = requests.get(url, headers=headers, timeout=10)
print(f"🔍 Token test response: {r.status_code}")
if r.status_code == 200:
print("✅ Token access confirmed for gated model.")
elif r.status_code == 403:
print("❌ 403 Forbidden: Token does not have access.")
else:
print("⚠️ Unexpected status:", r.status_code)
except Exception as e:
print("❌ Token check failed:", e)
class CachedWebSearchTool(WebSearchTool):
@lru_cache(maxsize=128)
def run(self, query: str):
# identical queries return instantly
return super().run(query)
class CachedWikiTool(WikipediaSearchTool):
@lru_cache(maxsize=128)
def run(self, page: str):
return super().run(page)
class PreloadedPythonTool(PythonInterpreterTool):
"""
A PythonInterpreterTool that automatically prepends the necessary imports
(bs4, BeautifulSoup, regex) so you never hit NameError inside your code blocks.
"""
def run(self, code: str) -> str:
preamble = (
"import bs4\n"
"from bs4 import BeautifulSoup\n"
"import regex\n"
)
return super().run(preamble + code)
# --- Basic Agent Definition ---
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
def __init__(self, model_id="meta-llama/Llama-3.1-8B-Instruct", hf_token=""):
print("BasicAgent initialized.")
print("ENV-HF_TOKEN-LEN", len(hf_token), file=sys.stderr)
check_token_access()
# Local test
# client = InferenceClient(
# model="meta-llama/Llama-3.1-8B-Instruct",
# token=os.environ["HF_TOKEN"]
# )
# print(client.text_generation("Hello, my name is", max_new_tokens=20))
# Initialize the model
# model = HfApiModel(model_id="meta-llama/Llama-3.1-8B-Instruct",
# # format="text-generation",
# token=os.environ["HF_TOKEN"],
# max_tokens=2048,
# temperature=0.0
# )
# Initialize the tools other than the base tools
# See list of base tools in https://github.com/huggingface/smolagents/blob/main/src/smolagents/default_tools.py
# Download the model weights and build the pipeline
tok = AutoTokenizer.from_pretrained(model_id, token=hf_token)
mod = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto", # auto-distributes to GPU
token=hf_token
)
self.pipe = pipeline(
"text-generation",
model=mod,
tokenizer=tok,
max_new_tokens=512,
return_full_text=False, # <— only get the completion, not the prompt + completion
# temperature=1.0,
)
# Introduce tools
wiki_tool = CachedWikiTool()
search_tool = CachedWebSearchTool()
python_tool = PreloadedPythonTool()
html_parse_tool = VisitWebpageTool()
# System prompt
# 1) Get the default templates
default_templates = PromptTemplates()
print(">>> prompt_templates is a", type(default_templates))
# 2) Construct a new one, swapping in only your system prompt
my_templates = PromptTemplates(
system_prompt=(
"When writing Python code in the PythonInterpreterTool,"
"you must always import bs4 and regex (already preloaded),"
"and *return* your result by calling final_answer(...). Do not assign to a variable named final_answer."
),
planning=default_templates.planning,
managed_agent=default_templates.managed_agent,
final_answer=default_templates.final_answer,
)
# Initialize the agent
self.agent = CodeAgent(model=self,
tools=[wiki_tool, search_tool, python_tool, html_parse_tool],
add_base_tools=True,
prompt_templates=my_templates,
additional_authorized_imports=["dateparser", "bs4", "regex"]
)
def _serialize_messages(self, messages):
prompt = []
for m in messages:
r = m["role"]
role = r.value if isinstance(r, Enum) and hasattr(r, "value") else r # "system" / "user" / "assistant"
text = "".join([c['text'] for c in m['content']])
prompt.append(f"{role}: {text}")
return "\n".join(prompt)
def generate(self, question: str, stop_sequences=None, **kwargs) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
# 1. Build the HF kwargs
allowed = {"max_new_tokens", "temperature", "top_k", "top_p"}
gen_kwargs = {k: v for k, v in kwargs.items() if k in allowed}
# 2. Serialize the message and get the response
prompt_str = (
self._serialize_messages(question)
if isinstance(question, list)
else question
)
outputs = self.pipe(prompt_str, **gen_kwargs)
response = outputs[0]["generated_text"]
# response = self.agent.run(question)
# 3. Optionally map SmolAgents’ stop_sequences → HF pipeline’s 'stop'
if stop_sequences:
# find the earliest occurrence of any stop token
cuts = [response.find(s) for s in stop_sequences if response.find(s) != -1]
if cuts:
response = response[: min(cuts)]
print(f"Agent returning its generated answer: {response}")
# wrap back into a chat message dict
return ChatMessage(role="assistant", content=response)
# return {
# "role": 'assistant',
# "content": [{"type": "text", "text": response}],
# }
__call__ = generate
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
hf_token = os.getenv("HF_TOKEN")
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent(hf_token=hf_token).agent
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
questions_data = questions_data[:5]
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |