File size: 16,461 Bytes
60ec0e8
 
 
 
 
 
 
 
 
 
 
 
 
84f4310
60ec0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d255b5
 
 
 
 
 
 
 
 
 
 
 
 
60ec0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d255b5
60ec0e8
84f4310
d9c3ea8
 
7ae7ed2
d9c3ea8
84f4310
 
 
 
 
d9c3ea8
 
 
 
84f4310
60ec0e8
 
 
 
84f4310
 
5d255b5
60ec0e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import os, sys
from enum import Enum
import gradio as gr
import requests
import inspect
import subprocess
import dateparser
from bs4 import BeautifulSoup
import regex
import pandas as pd
import torch
from functools import lru_cache
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from smolagents import PromptTemplates, CodeAgent, WebSearchTool, WikipediaSearchTool, VisitWebpageTool, PythonInterpreterTool
import smolagents.tools as _tools
from smolagents.models import ChatMessage
# from huggingface_hub import InferenceClient, hf_hub_download

subprocess.run(["playwright", "install"], check=True)

print(dir(_tools))

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# class LocalLLM:
#     def __init__(self, pipe):
#         self.pipe = pipe

#     def generate(self, prompt, **kwargs):
#         unsupported_keys = ["stop_sequences"] # Remove keys not accepted by HF pipelines
#         cleaned_kwargs = {k: v for k, v in kwargs.items() if k not in unsupported_keys}
#         # print(f"🧪 kwargs cleaned: {cleaned_kwargs.keys()}")
#         try:
#             outputs = self.pipe(prompt, **cleaned_kwargs)
#             # print(f"🧪 Raw output from pipe: {outputs}")
#             if isinstance(outputs, list) and isinstance(outputs[0], dict):
#                 out = outputs[0]["generated_text"]
#             elif isinstance(outputs, list):
#                 out = outputs[0]  # fallback if it's just a list of strings
#             else:
#                 out = str(outputs)
#             print("🧪 Final object to return:", type(out), out[:100])
#             return {'role': 'assistant', 'content': [{'type':'text', 'text': out}]}
#         except Exception as e:
#             print(f"❌ Error in LocalLLM.generate(): {e}")
#             raise

def check_token_access():
    token = os.environ.get("HF_TOKEN", "")
    if not token:
        print("❌ No token found")
        return
    headers = {"Authorization": f"Bearer {token}"}
    url = "https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/resolve/main/config.json"
    try:
        r = requests.get(url, headers=headers, timeout=10)
        print(f"🔍 Token test response: {r.status_code}")
        if r.status_code == 200:
            print("✅ Token access confirmed for gated model.")
        elif r.status_code == 403:
            print("❌ 403 Forbidden: Token does not have access.")
        else:
            print("⚠️ Unexpected status:", r.status_code)
    except Exception as e:
        print("❌ Token check failed:", e)

class CachedWebSearchTool(WebSearchTool):
    @lru_cache(maxsize=128)
    def run(self, query: str):
        # identical queries return instantly
        return super().run(query)

class CachedWikiTool(WikipediaSearchTool):
    @lru_cache(maxsize=128)
    def run(self, page: str):
        return super().run(page)

class PreloadedPythonTool(PythonInterpreterTool):
    """
    A PythonInterpreterTool that automatically prepends the necessary imports
    (bs4, BeautifulSoup, regex) so you never hit NameError inside your code blocks.
    """
    def run(self, code: str) -> str:
        preamble = (
            "import bs4\n"
            "from bs4 import BeautifulSoup\n"
            "import regex\n"
        )
        return super().run(preamble + code)

# --- Basic Agent Definition ---
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
class BasicAgent:
    def __init__(self, model_id="meta-llama/Llama-3.1-8B-Instruct", hf_token=""):
        print("BasicAgent initialized.")
        print("ENV-HF_TOKEN-LEN", len(hf_token), file=sys.stderr)
        check_token_access()

        # Local test
        # client = InferenceClient(
        # model="meta-llama/Llama-3.1-8B-Instruct",
        # token=os.environ["HF_TOKEN"]
        # )
        # print(client.text_generation("Hello, my name is", max_new_tokens=20))
        
        # Initialize the model
        # model = HfApiModel(model_id="meta-llama/Llama-3.1-8B-Instruct",
        #                   # format="text-generation",
        #                   token=os.environ["HF_TOKEN"], 
        #                   max_tokens=2048,
        #                   temperature=0.0
        #                  )
        
        # Initialize the tools other than the base tools
        # See list of base tools in https://github.com/huggingface/smolagents/blob/main/src/smolagents/default_tools.py
        
        # Download the model weights and build the pipeline
        tok = AutoTokenizer.from_pretrained(model_id, token=hf_token)
        mod = AutoModelForCausalLM.from_pretrained(
            model_id,
            torch_dtype=torch.float16,
            device_map="auto",  # auto-distributes to GPU
            token=hf_token
        )
        self.pipe = pipeline(
            "text-generation",
            model=mod,
            tokenizer=tok,
            max_new_tokens=512,
            return_full_text=False,      # <— only get the completion, not the prompt + completion
            # temperature=1.0,
        )
        # Introduce tools
        wiki_tool = CachedWikiTool()
        search_tool = CachedWebSearchTool()
        python_tool = PreloadedPythonTool()
        html_parse_tool = VisitWebpageTool()
        # System prompt
        # 1) Get the default templates
        default_templates = PromptTemplates()
        print(">>> prompt_templates is a", type(default_templates))
        # 2) Construct a new one, swapping in only your system prompt
        my_templates = PromptTemplates(
            system_prompt=(
                "When writing Python code in the PythonInterpreterTool," 
                "you must always import bs4 and regex (already preloaded)," 
                "and *return* your result by calling final_answer(...). Do not assign to a variable named final_answer."
            ),
            planning=default_templates.planning,
            managed_agent=default_templates.managed_agent,
            final_answer=default_templates.final_answer,
        )
        # Initialize the agent
        self.agent = CodeAgent(model=self, 
                               tools=[wiki_tool, search_tool, python_tool, html_parse_tool], 
                               add_base_tools=True,
                               prompt_templates=my_templates, 
                               additional_authorized_imports=["dateparser", "bs4", "regex"]
         )
        
    def _serialize_messages(self, messages):
        prompt = []
        for m in messages:
            r = m["role"]
            role = r.value if isinstance(r, Enum) and hasattr(r, "value") else r # "system" / "user" / "assistant"
            text = "".join([c['text'] for c in m['content']])
            prompt.append(f"{role}: {text}")
        return "\n".join(prompt)

    def generate(self, question: str, stop_sequences=None, **kwargs) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        # 1. Build the HF kwargs
        allowed = {"max_new_tokens", "temperature", "top_k", "top_p"}
        gen_kwargs = {k: v for k, v in kwargs.items() if k in allowed}
        
        # 2. Serialize the message and get the response
        prompt_str = (
            self._serialize_messages(question)
            if isinstance(question, list)
            else question
        )
        outputs = self.pipe(prompt_str, **gen_kwargs)
        response = outputs[0]["generated_text"]
        # response = self.agent.run(question)

        # 3. Optionally map SmolAgents’ stop_sequences → HF pipeline’s 'stop'
        if stop_sequences:
            # find the earliest occurrence of any stop token
            cuts = [response.find(s) for s in stop_sequences if response.find(s) != -1]
            if cuts:
                response = response[: min(cuts)]
        
        print(f"Agent returning its generated answer: {response}")
        
        # wrap back into a chat message dict
        return ChatMessage(role="assistant", content=response)
        # return {
        #     "role": 'assistant',
        #     "content": [{"type": "text", "text": response}],
        # }

    __call__ = generate

def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
    hf_token = os.getenv("HF_TOKEN")

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent ( modify this part to create your agent)
    try:
        agent = BasicAgent(hf_token=hf_token).agent
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    questions_data = questions_data[:5]
    
    # 3. Run your Agent
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)