Upload 2 files
Browse files- app.py +351 -0
- requirements.txt +14 -0
app.py
ADDED
@@ -0,0 +1,351 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys
|
2 |
+
from enum import Enum
|
3 |
+
import gradio as gr
|
4 |
+
import requests
|
5 |
+
import inspect
|
6 |
+
import subprocess
|
7 |
+
import dateparser
|
8 |
+
from bs4 import BeautifulSoup
|
9 |
+
import regex
|
10 |
+
import pandas as pd
|
11 |
+
import torch
|
12 |
+
from functools import lru_cache
|
13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
14 |
+
from smolagents import CodeAgent, WebSearchTool, WikipediaSearchTool, VisitWebpageTool, PythonInterpreterTool
|
15 |
+
import smolagents.tools as _tools
|
16 |
+
from smolagents.models import ChatMessage
|
17 |
+
# from huggingface_hub import InferenceClient, hf_hub_download
|
18 |
+
|
19 |
+
subprocess.run(["playwright", "install"], check=True)
|
20 |
+
|
21 |
+
print(dir(_tools))
|
22 |
+
|
23 |
+
# (Keep Constants as is)
|
24 |
+
# --- Constants ---
|
25 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
26 |
+
|
27 |
+
# class LocalLLM:
|
28 |
+
# def __init__(self, pipe):
|
29 |
+
# self.pipe = pipe
|
30 |
+
|
31 |
+
# def generate(self, prompt, **kwargs):
|
32 |
+
# unsupported_keys = ["stop_sequences"] # Remove keys not accepted by HF pipelines
|
33 |
+
# cleaned_kwargs = {k: v for k, v in kwargs.items() if k not in unsupported_keys}
|
34 |
+
# # print(f"🧪 kwargs cleaned: {cleaned_kwargs.keys()}")
|
35 |
+
# try:
|
36 |
+
# outputs = self.pipe(prompt, **cleaned_kwargs)
|
37 |
+
# # print(f"🧪 Raw output from pipe: {outputs}")
|
38 |
+
# if isinstance(outputs, list) and isinstance(outputs[0], dict):
|
39 |
+
# out = outputs[0]["generated_text"]
|
40 |
+
# elif isinstance(outputs, list):
|
41 |
+
# out = outputs[0] # fallback if it's just a list of strings
|
42 |
+
# else:
|
43 |
+
# out = str(outputs)
|
44 |
+
# print("🧪 Final object to return:", type(out), out[:100])
|
45 |
+
# return {'role': 'assistant', 'content': [{'type':'text', 'text': out}]}
|
46 |
+
# except Exception as e:
|
47 |
+
# print(f"❌ Error in LocalLLM.generate(): {e}")
|
48 |
+
# raise
|
49 |
+
|
50 |
+
def check_token_access():
|
51 |
+
token = os.environ.get("HF_TOKEN", "")
|
52 |
+
if not token:
|
53 |
+
print("❌ No token found")
|
54 |
+
return
|
55 |
+
headers = {"Authorization": f"Bearer {token}"}
|
56 |
+
url = "https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/resolve/main/config.json"
|
57 |
+
try:
|
58 |
+
r = requests.get(url, headers=headers, timeout=10)
|
59 |
+
print(f"🔍 Token test response: {r.status_code}")
|
60 |
+
if r.status_code == 200:
|
61 |
+
print("✅ Token access confirmed for gated model.")
|
62 |
+
elif r.status_code == 403:
|
63 |
+
print("❌ 403 Forbidden: Token does not have access.")
|
64 |
+
else:
|
65 |
+
print("⚠️ Unexpected status:", r.status_code)
|
66 |
+
except Exception as e:
|
67 |
+
print("❌ Token check failed:", e)
|
68 |
+
|
69 |
+
class CachedWebSearchTool(WebSearchTool):
|
70 |
+
@lru_cache(maxsize=128)
|
71 |
+
def run(self, query: str):
|
72 |
+
# identical queries return instantly
|
73 |
+
return super().run(query)
|
74 |
+
|
75 |
+
class CachedWikiTool(WikipediaSearchTool):
|
76 |
+
@lru_cache(maxsize=128)
|
77 |
+
def run(self, page: str):
|
78 |
+
return super().run(page)
|
79 |
+
|
80 |
+
# --- Basic Agent Definition ---
|
81 |
+
# ----- THIS IS WHERE YOU CAN BUILD WHAT YOU WANT ------
|
82 |
+
class BasicAgent:
|
83 |
+
def __init__(self, model_id="meta-llama/Llama-3.1-8B-Instruct", hf_token=""):
|
84 |
+
print("BasicAgent initialized.")
|
85 |
+
print("ENV-HF_TOKEN-LEN", len(hf_token), file=sys.stderr)
|
86 |
+
check_token_access()
|
87 |
+
|
88 |
+
# Local test
|
89 |
+
# client = InferenceClient(
|
90 |
+
# model="meta-llama/Llama-3.1-8B-Instruct",
|
91 |
+
# token=os.environ["HF_TOKEN"]
|
92 |
+
# )
|
93 |
+
# print(client.text_generation("Hello, my name is", max_new_tokens=20))
|
94 |
+
|
95 |
+
# Initialize the model
|
96 |
+
# model = HfApiModel(model_id="meta-llama/Llama-3.1-8B-Instruct",
|
97 |
+
# # format="text-generation",
|
98 |
+
# token=os.environ["HF_TOKEN"],
|
99 |
+
# max_tokens=2048,
|
100 |
+
# temperature=0.0
|
101 |
+
# )
|
102 |
+
|
103 |
+
# Initialize the tools other than the base tools
|
104 |
+
# See list of base tools in https://github.com/huggingface/smolagents/blob/main/src/smolagents/default_tools.py
|
105 |
+
|
106 |
+
# Download the model weights and build the pipeline
|
107 |
+
tok = AutoTokenizer.from_pretrained(model_id, token=hf_token)
|
108 |
+
mod = AutoModelForCausalLM.from_pretrained(
|
109 |
+
model_id,
|
110 |
+
torch_dtype=torch.float16,
|
111 |
+
device_map="auto", # auto-distributes to GPU
|
112 |
+
token=hf_token
|
113 |
+
)
|
114 |
+
self.pipe = pipeline(
|
115 |
+
"text-generation",
|
116 |
+
model=mod,
|
117 |
+
tokenizer=tok,
|
118 |
+
max_new_tokens=512,
|
119 |
+
return_full_text=False, # <— only get the completion, not the prompt + completion
|
120 |
+
# temperature=1.0,
|
121 |
+
)
|
122 |
+
# Introduce tools
|
123 |
+
wiki_tool = CachedWikiTool()
|
124 |
+
search_tool = CachedWebSearchTool()
|
125 |
+
python_tool = PythonInterpreterTool()
|
126 |
+
html_parse_tool = VisitWebpageTool()
|
127 |
+
# Initialize the agent
|
128 |
+
self.agent = CodeAgent(model=self,
|
129 |
+
tools=[wiki_tool, search_tool, python_tool, html_parse_tool],
|
130 |
+
add_base_tools=True,
|
131 |
+
additional_authorized_imports=["dateparser", "bs4", "regex"])
|
132 |
+
|
133 |
+
def _serialize_messages(self, messages):
|
134 |
+
prompt = []
|
135 |
+
for m in messages:
|
136 |
+
r = m["role"]
|
137 |
+
role = r.value if isinstance(r, Enum) and hasattr(r, "value") else r # "system" / "user" / "assistant"
|
138 |
+
text = "".join([c['text'] for c in m['content']])
|
139 |
+
prompt.append(f"{role}: {text}")
|
140 |
+
return "\n".join(prompt)
|
141 |
+
|
142 |
+
def generate(self, question: str, stop_sequences=None, **kwargs) -> str:
|
143 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
144 |
+
# 1. Build the HF kwargs
|
145 |
+
allowed = {"max_new_tokens", "temperature", "top_k", "top_p"}
|
146 |
+
gen_kwargs = {k: v for k, v in kwargs.items() if k in allowed}
|
147 |
+
|
148 |
+
# 2. Serialize the message and get the response
|
149 |
+
prompt_str = (
|
150 |
+
self._serialize_messages(question)
|
151 |
+
if isinstance(question, list)
|
152 |
+
else question
|
153 |
+
)
|
154 |
+
outputs = self.pipe(prompt_str, **gen_kwargs)
|
155 |
+
response = outputs[0]["generated_text"]
|
156 |
+
# response = self.agent.run(question)
|
157 |
+
|
158 |
+
# 3. Optionally map SmolAgents’ stop_sequences → HF pipeline’s 'stop'
|
159 |
+
if stop_sequences:
|
160 |
+
# find the earliest occurrence of any stop token
|
161 |
+
cuts = [response.find(s) for s in stop_sequences if response.find(s) != -1]
|
162 |
+
if cuts:
|
163 |
+
response = response[: min(cuts)]
|
164 |
+
|
165 |
+
print(f"Agent returning its generated answer: {response}")
|
166 |
+
|
167 |
+
# wrap back into a chat message dict
|
168 |
+
return ChatMessage(role="assistant", content=response)
|
169 |
+
# return {
|
170 |
+
# "role": 'assistant',
|
171 |
+
# "content": [{"type": "text", "text": response}],
|
172 |
+
# }
|
173 |
+
|
174 |
+
__call__ = generate
|
175 |
+
|
176 |
+
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
177 |
+
"""
|
178 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
179 |
+
and displays the results.
|
180 |
+
"""
|
181 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
182 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
183 |
+
hf_token = os.getenv("HF_TOKEN")
|
184 |
+
|
185 |
+
if profile:
|
186 |
+
username= f"{profile.username}"
|
187 |
+
print(f"User logged in: {username}")
|
188 |
+
else:
|
189 |
+
print("User not logged in.")
|
190 |
+
return "Please Login to Hugging Face with the button.", None
|
191 |
+
|
192 |
+
api_url = DEFAULT_API_URL
|
193 |
+
questions_url = f"{api_url}/questions"
|
194 |
+
submit_url = f"{api_url}/submit"
|
195 |
+
|
196 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
197 |
+
try:
|
198 |
+
agent = BasicAgent(hf_token=hf_token).agent
|
199 |
+
except Exception as e:
|
200 |
+
print(f"Error instantiating agent: {e}")
|
201 |
+
return f"Error initializing agent: {e}", None
|
202 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
203 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
204 |
+
print(agent_code)
|
205 |
+
|
206 |
+
# 2. Fetch Questions
|
207 |
+
print(f"Fetching questions from: {questions_url}")
|
208 |
+
try:
|
209 |
+
response = requests.get(questions_url, timeout=15)
|
210 |
+
response.raise_for_status()
|
211 |
+
questions_data = response.json()
|
212 |
+
if not questions_data:
|
213 |
+
print("Fetched questions list is empty.")
|
214 |
+
return "Fetched questions list is empty or invalid format.", None
|
215 |
+
print(f"Fetched {len(questions_data)} questions.")
|
216 |
+
except requests.exceptions.RequestException as e:
|
217 |
+
print(f"Error fetching questions: {e}")
|
218 |
+
return f"Error fetching questions: {e}", None
|
219 |
+
except requests.exceptions.JSONDecodeError as e:
|
220 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
221 |
+
print(f"Response text: {response.text[:500]}")
|
222 |
+
return f"Error decoding server response for questions: {e}", None
|
223 |
+
except Exception as e:
|
224 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
225 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
226 |
+
|
227 |
+
questions_data = questions_data[:5]
|
228 |
+
|
229 |
+
# 3. Run your Agent
|
230 |
+
results_log = []
|
231 |
+
answers_payload = []
|
232 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
233 |
+
for item in questions_data:
|
234 |
+
task_id = item.get("task_id")
|
235 |
+
question_text = item.get("question")
|
236 |
+
if not task_id or question_text is None:
|
237 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
238 |
+
continue
|
239 |
+
try:
|
240 |
+
submitted_answer = agent(question_text)
|
241 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
242 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
243 |
+
except Exception as e:
|
244 |
+
print(f"Error running agent on task {task_id}: {e}")
|
245 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
246 |
+
|
247 |
+
if not answers_payload:
|
248 |
+
print("Agent did not produce any answers to submit.")
|
249 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
250 |
+
|
251 |
+
# 4. Prepare Submission
|
252 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
253 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
254 |
+
print(status_update)
|
255 |
+
|
256 |
+
# 5. Submit
|
257 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
258 |
+
try:
|
259 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
260 |
+
response.raise_for_status()
|
261 |
+
result_data = response.json()
|
262 |
+
final_status = (
|
263 |
+
f"Submission Successful!\n"
|
264 |
+
f"User: {result_data.get('username')}\n"
|
265 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
266 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
267 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
268 |
+
)
|
269 |
+
print("Submission successful.")
|
270 |
+
results_df = pd.DataFrame(results_log)
|
271 |
+
return final_status, results_df
|
272 |
+
except requests.exceptions.HTTPError as e:
|
273 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
274 |
+
try:
|
275 |
+
error_json = e.response.json()
|
276 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
277 |
+
except requests.exceptions.JSONDecodeError:
|
278 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
279 |
+
status_message = f"Submission Failed: {error_detail}"
|
280 |
+
print(status_message)
|
281 |
+
results_df = pd.DataFrame(results_log)
|
282 |
+
return status_message, results_df
|
283 |
+
except requests.exceptions.Timeout:
|
284 |
+
status_message = "Submission Failed: The request timed out."
|
285 |
+
print(status_message)
|
286 |
+
results_df = pd.DataFrame(results_log)
|
287 |
+
return status_message, results_df
|
288 |
+
except requests.exceptions.RequestException as e:
|
289 |
+
status_message = f"Submission Failed: Network error - {e}"
|
290 |
+
print(status_message)
|
291 |
+
results_df = pd.DataFrame(results_log)
|
292 |
+
return status_message, results_df
|
293 |
+
except Exception as e:
|
294 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
295 |
+
print(status_message)
|
296 |
+
results_df = pd.DataFrame(results_log)
|
297 |
+
return status_message, results_df
|
298 |
+
|
299 |
+
|
300 |
+
# --- Build Gradio Interface using Blocks ---
|
301 |
+
with gr.Blocks() as demo:
|
302 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
303 |
+
gr.Markdown(
|
304 |
+
"""
|
305 |
+
**Instructions:**
|
306 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
307 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
308 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
309 |
+
---
|
310 |
+
**Disclaimers:**
|
311 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
312 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
313 |
+
"""
|
314 |
+
)
|
315 |
+
|
316 |
+
gr.LoginButton()
|
317 |
+
|
318 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
319 |
+
|
320 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
321 |
+
# Removed max_rows=10 from DataFrame constructor
|
322 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
323 |
+
|
324 |
+
run_button.click(
|
325 |
+
fn=run_and_submit_all,
|
326 |
+
outputs=[status_output, results_table]
|
327 |
+
)
|
328 |
+
|
329 |
+
if __name__ == "__main__":
|
330 |
+
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
331 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
332 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
333 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
334 |
+
|
335 |
+
if space_host_startup:
|
336 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
337 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
338 |
+
else:
|
339 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
340 |
+
|
341 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
342 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
343 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
344 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
345 |
+
else:
|
346 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
347 |
+
|
348 |
+
print("-"*(60 + len(" App Starting ")) + "\n")
|
349 |
+
|
350 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
351 |
+
demo.launch(debug=True, share=False)
|
requirements.txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
requests
|
3 |
+
smolagents[toolkit] @ git+https://github.com/huggingface/smolagents.git@v1.16.1
|
4 |
+
torch
|
5 |
+
transformers>=4.38.0
|
6 |
+
duckduckgo-search
|
7 |
+
wikipedia-api
|
8 |
+
dateparser
|
9 |
+
playwright
|
10 |
+
accelerate>=0.24.0
|
11 |
+
peft
|
12 |
+
bitsandbytes
|
13 |
+
beautifulsoup4
|
14 |
+
regex
|