|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class AFF(nn.Module): |
|
def __init__(self, channels=64, r=4): |
|
super(AFF, self).__init__() |
|
inter_channels = int(channels // r) |
|
|
|
self.local_att = nn.Sequential( |
|
nn.Conv2d(channels * 2, inter_channels, kernel_size=1, stride=1, padding=0), |
|
nn.BatchNorm2d(inter_channels), |
|
nn.SiLU(inplace=True), |
|
nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0), |
|
nn.BatchNorm2d(channels), |
|
) |
|
|
|
def forward(self, x, ds_y): |
|
xa = torch.cat((x, ds_y), dim=1) |
|
x_att = self.local_att(xa) |
|
x_att = 1.0 + torch.tanh(x_att) |
|
xo = torch.mul(x, x_att) + torch.mul(ds_y, 2.0 - x_att) |
|
|
|
return xo |
|
|