Commit
·
60ea83f
1
Parent(s):
ad2f564
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +8 -0
- .gitignore +3 -0
- AR/__init__.py +0 -0
- AR/data/__init__.py +0 -0
- AR/data/bucket_sampler.py +149 -0
- AR/data/data_module.py +81 -0
- AR/data/dataset.py +320 -0
- AR/models/__init__.py +0 -0
- AR/models/t2s_lightning_module.py +146 -0
- AR/models/t2s_lightning_module_onnx.py +110 -0
- AR/models/t2s_model.py +935 -0
- AR/models/t2s_model_onnx.py +394 -0
- AR/models/utils.py +282 -0
- AR/modules/__init__.py +0 -0
- AR/modules/activation.py +413 -0
- AR/modules/activation_onnx.py +188 -0
- AR/modules/embedding.py +78 -0
- AR/modules/embedding_onnx.py +63 -0
- AR/modules/lr_schedulers.py +85 -0
- AR/modules/optim.py +593 -0
- AR/modules/patched_mha_with_cache.py +428 -0
- AR/modules/patched_mha_with_cache_onnx.py +85 -0
- AR/modules/scaling.py +320 -0
- AR/modules/transformer.py +362 -0
- AR/modules/transformer_onnx.py +281 -0
- AR/text_processing/__init__.py +0 -0
- AR/text_processing/phonemizer.py +72 -0
- AR/text_processing/symbols.py +12 -0
- AR/utils/__init__.py +36 -0
- AR/utils/initialize.py +39 -0
- AR/utils/io.py +30 -0
- BigVGAN/LICENSE +21 -0
- BigVGAN/README.md +266 -0
- BigVGAN/activations.py +122 -0
- BigVGAN/alias_free_activation/cuda/__init__.py +0 -0
- BigVGAN/alias_free_activation/cuda/activation1d.py +69 -0
- BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp +23 -0
- BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu +246 -0
- BigVGAN/alias_free_activation/cuda/build/_ +1 -0
- BigVGAN/alias_free_activation/cuda/compat.h +29 -0
- BigVGAN/alias_free_activation/cuda/load.py +82 -0
- BigVGAN/alias_free_activation/cuda/type_shim.h +92 -0
- BigVGAN/alias_free_activation/torch/__init__.py +6 -0
- BigVGAN/alias_free_activation/torch/act.py +30 -0
- BigVGAN/alias_free_activation/torch/filter.py +99 -0
- BigVGAN/alias_free_activation/torch/resample.py +48 -0
- BigVGAN/bigvgan.py +461 -0
- BigVGAN/configs/bigvgan_22khz_80band.json +45 -0
- BigVGAN/configs/bigvgan_24khz_100band.json +45 -0
- BigVGAN/configs/bigvgan_base_22khz_80band.json +45 -0
.gitattributes
CHANGED
@@ -33,3 +33,11 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
text/ja_userdic/userdict.csv filter=lfs diff=lfs merge=lfs -text
|
37 |
+
text/g2pw/polyphonic-fix.rep filter=lfs diff=lfs merge=lfs -text
|
38 |
+
text/g2pw/polyphonic.pickle filter=lfs diff=lfs merge=lfs -text
|
39 |
+
text/g2pw/polyphonic.rep filter=lfs diff=lfs merge=lfs -text
|
40 |
+
text/G2PWModel/char_bopomofo_dict.json filter=lfs diff=lfs merge=lfs -text
|
41 |
+
text/cmudict-fast.rep filter=lfs diff=lfs merge=lfs -text
|
42 |
+
text/cmudict.rep filter=lfs diff=lfs merge=lfs -text
|
43 |
+
text/engdict-hot.rep filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
*/.DS_Store
|
2 |
+
.DS_Store
|
3 |
+
.idea/
|
AR/__init__.py
ADDED
File without changes
|
AR/data/__init__.py
ADDED
File without changes
|
AR/data/bucket_sampler.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/bucket_sampler.py
|
2 |
+
# reference: https://github.com/lifeiteng/vall-e
|
3 |
+
import itertools
|
4 |
+
import math
|
5 |
+
import random
|
6 |
+
from random import shuffle
|
7 |
+
from typing import Iterator, Optional, TypeVar
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.distributed as dist
|
11 |
+
from torch.utils.data import Dataset, Sampler
|
12 |
+
|
13 |
+
__all__ = [
|
14 |
+
"DistributedBucketSampler",
|
15 |
+
]
|
16 |
+
|
17 |
+
T_co = TypeVar("T_co", covariant=True)
|
18 |
+
|
19 |
+
|
20 |
+
class DistributedBucketSampler(Sampler[T_co]):
|
21 |
+
r"""
|
22 |
+
sort the dataset wrt. input length
|
23 |
+
divide samples into buckets
|
24 |
+
sort within buckets
|
25 |
+
divide buckets into batches
|
26 |
+
sort batches
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
dataset: Dataset,
|
32 |
+
num_replicas: Optional[int] = None,
|
33 |
+
rank: Optional[int] = None,
|
34 |
+
shuffle: bool = True,
|
35 |
+
seed: int = 0,
|
36 |
+
drop_last: bool = False,
|
37 |
+
batch_size: int = 32,
|
38 |
+
) -> None:
|
39 |
+
if num_replicas is None:
|
40 |
+
if not dist.is_available():
|
41 |
+
raise RuntimeError("Requires distributed package to be available")
|
42 |
+
num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1
|
43 |
+
if rank is None:
|
44 |
+
if not dist.is_available():
|
45 |
+
raise RuntimeError("Requires distributed package to be available")
|
46 |
+
rank = dist.get_rank() if torch.cuda.is_available() else 0
|
47 |
+
if torch.cuda.is_available():
|
48 |
+
torch.cuda.set_device(rank)
|
49 |
+
if rank >= num_replicas or rank < 0:
|
50 |
+
raise ValueError("Invalid rank {}, rank should be in the interval [0, {}]".format(rank, num_replicas - 1))
|
51 |
+
self.dataset = dataset
|
52 |
+
self.num_replicas = num_replicas
|
53 |
+
self.rank = rank
|
54 |
+
self.epoch = 0
|
55 |
+
self.drop_last = drop_last
|
56 |
+
# If the dataset length is evenly divisible by # of replicas, then there
|
57 |
+
# is no need to drop any data, since the dataset will be split equally.
|
58 |
+
if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
|
59 |
+
# Split to nearest available length that is evenly divisible.
|
60 |
+
# This is to ensure each rank receives the same amount of data when
|
61 |
+
# using this Sampler.
|
62 |
+
self.num_samples = math.ceil(
|
63 |
+
(len(self.dataset) - self.num_replicas) / self.num_replicas, # type: ignore[arg-type]
|
64 |
+
)
|
65 |
+
else:
|
66 |
+
self.num_samples = math.ceil(
|
67 |
+
len(self.dataset) / self.num_replicas,
|
68 |
+
) # type: ignore[arg-type]
|
69 |
+
self.total_size = self.num_samples * self.num_replicas
|
70 |
+
self.shuffle = shuffle
|
71 |
+
self.seed = seed
|
72 |
+
self.batch_size = batch_size
|
73 |
+
self.id_with_length = self._get_sample_lengths()
|
74 |
+
self.id_buckets = self.make_buckets(bucket_width=2.0)
|
75 |
+
|
76 |
+
def _get_sample_lengths(self):
|
77 |
+
id_with_lengths = []
|
78 |
+
for i in range(len(self.dataset)):
|
79 |
+
id_with_lengths.append((i, self.dataset.get_sample_length(i)))
|
80 |
+
id_with_lengths.sort(key=lambda x: x[1])
|
81 |
+
return id_with_lengths
|
82 |
+
|
83 |
+
def make_buckets(self, bucket_width: float = 2.0):
|
84 |
+
buckets = []
|
85 |
+
cur = []
|
86 |
+
max_sec = bucket_width
|
87 |
+
for id, sec in self.id_with_length:
|
88 |
+
if sec < max_sec:
|
89 |
+
cur.append(id)
|
90 |
+
else:
|
91 |
+
buckets.append(cur)
|
92 |
+
cur = [id]
|
93 |
+
max_sec += bucket_width
|
94 |
+
if len(cur) > 0:
|
95 |
+
buckets.append(cur)
|
96 |
+
return buckets
|
97 |
+
|
98 |
+
def __iter__(self) -> Iterator[T_co]:
|
99 |
+
if self.shuffle:
|
100 |
+
# deterministically shuffle based on epoch and seed
|
101 |
+
g = torch.Generator()
|
102 |
+
g.manual_seed(self.seed + self.epoch)
|
103 |
+
random.seed(self.epoch + self.seed)
|
104 |
+
shuffled_bucket = []
|
105 |
+
for buc in self.id_buckets:
|
106 |
+
buc_copy = buc.copy()
|
107 |
+
shuffle(buc_copy)
|
108 |
+
shuffled_bucket.append(buc_copy)
|
109 |
+
grouped_batch_size = self.batch_size * self.num_replicas
|
110 |
+
shuffled_bucket = list(itertools.chain(*shuffled_bucket))
|
111 |
+
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
|
112 |
+
batches = [shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size] for b in range(n_batch)]
|
113 |
+
shuffle(batches)
|
114 |
+
indices = list(itertools.chain(*batches))
|
115 |
+
else:
|
116 |
+
# type: ignore[arg-type]
|
117 |
+
indices = list(range(len(self.dataset)))
|
118 |
+
|
119 |
+
if not self.drop_last:
|
120 |
+
# add extra samples to make it evenly divisible
|
121 |
+
padding_size = self.total_size - len(indices)
|
122 |
+
if padding_size <= len(indices):
|
123 |
+
indices += indices[:padding_size]
|
124 |
+
else:
|
125 |
+
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
|
126 |
+
else:
|
127 |
+
# remove tail of data to make it evenly divisible.
|
128 |
+
indices = indices[: self.total_size]
|
129 |
+
assert len(indices) == self.total_size
|
130 |
+
|
131 |
+
# subsample
|
132 |
+
indices = indices[self.rank : self.total_size : self.num_replicas]
|
133 |
+
assert len(indices) == self.num_samples
|
134 |
+
|
135 |
+
return iter(indices)
|
136 |
+
|
137 |
+
def __len__(self) -> int:
|
138 |
+
return self.num_samples
|
139 |
+
|
140 |
+
def set_epoch(self, epoch: int) -> None:
|
141 |
+
r"""
|
142 |
+
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
|
143 |
+
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
144 |
+
sampler will yield the same ordering.
|
145 |
+
|
146 |
+
Args:
|
147 |
+
epoch (int): Epoch number.
|
148 |
+
"""
|
149 |
+
self.epoch = epoch
|
AR/data/data_module.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/data_module.py
|
2 |
+
# reference: https://github.com/lifeiteng/vall-e
|
3 |
+
from pytorch_lightning import LightningDataModule
|
4 |
+
from torch.utils.data import DataLoader
|
5 |
+
|
6 |
+
from AR.data.bucket_sampler import DistributedBucketSampler
|
7 |
+
from AR.data.dataset import Text2SemanticDataset
|
8 |
+
|
9 |
+
|
10 |
+
class Text2SemanticDataModule(LightningDataModule):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
config,
|
14 |
+
train_semantic_path,
|
15 |
+
train_phoneme_path,
|
16 |
+
dev_semantic_path=None,
|
17 |
+
dev_phoneme_path=None,
|
18 |
+
):
|
19 |
+
super().__init__()
|
20 |
+
self.config = config
|
21 |
+
self.train_semantic_path = train_semantic_path
|
22 |
+
self.train_phoneme_path = train_phoneme_path
|
23 |
+
self.dev_semantic_path = dev_semantic_path
|
24 |
+
self.dev_phoneme_path = dev_phoneme_path
|
25 |
+
self.num_workers = self.config["data"]["num_workers"]
|
26 |
+
|
27 |
+
def prepare_data(self):
|
28 |
+
pass
|
29 |
+
|
30 |
+
def setup(self, stage=None, output_logs=False):
|
31 |
+
self._train_dataset = Text2SemanticDataset(
|
32 |
+
phoneme_path=self.train_phoneme_path,
|
33 |
+
semantic_path=self.train_semantic_path,
|
34 |
+
max_sec=self.config["data"]["max_sec"],
|
35 |
+
pad_val=self.config["data"]["pad_val"],
|
36 |
+
)
|
37 |
+
self._dev_dataset = self._train_dataset
|
38 |
+
# self._dev_dataset = Text2SemanticDataset(
|
39 |
+
# phoneme_path=self.dev_phoneme_path,
|
40 |
+
# semantic_path=self.dev_semantic_path,
|
41 |
+
# max_sample=self.config['data']['max_eval_sample'],
|
42 |
+
# max_sec=self.config['data']['max_sec'],
|
43 |
+
# pad_val=self.config['data']['pad_val'])
|
44 |
+
|
45 |
+
def train_dataloader(self):
|
46 |
+
batch_size = (
|
47 |
+
self.config["train"]["batch_size"] // 2
|
48 |
+
if self.config["train"].get("if_dpo", False) is True
|
49 |
+
else self.config["train"]["batch_size"]
|
50 |
+
)
|
51 |
+
batch_size = max(min(batch_size, len(self._train_dataset) // 4), 1) # 防止不保存
|
52 |
+
sampler = DistributedBucketSampler(self._train_dataset, batch_size=batch_size)
|
53 |
+
return DataLoader(
|
54 |
+
self._train_dataset,
|
55 |
+
batch_size=batch_size,
|
56 |
+
sampler=sampler,
|
57 |
+
collate_fn=self._train_dataset.collate,
|
58 |
+
num_workers=self.num_workers,
|
59 |
+
persistent_workers=True,
|
60 |
+
prefetch_factor=16,
|
61 |
+
)
|
62 |
+
|
63 |
+
def val_dataloader(self):
|
64 |
+
return DataLoader(
|
65 |
+
self._dev_dataset,
|
66 |
+
batch_size=1,
|
67 |
+
shuffle=False,
|
68 |
+
collate_fn=self._train_dataset.collate,
|
69 |
+
num_workers=max(self.num_workers, 12),
|
70 |
+
persistent_workers=True,
|
71 |
+
prefetch_factor=16,
|
72 |
+
)
|
73 |
+
|
74 |
+
# 这个会使用到嘛?
|
75 |
+
def test_dataloader(self):
|
76 |
+
return DataLoader(
|
77 |
+
self._dev_dataset,
|
78 |
+
batch_size=1,
|
79 |
+
shuffle=False,
|
80 |
+
collate_fn=self._train_dataset.collate,
|
81 |
+
)
|
AR/data/dataset.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/dataset.py
|
2 |
+
# reference: https://github.com/lifeiteng/vall-e
|
3 |
+
|
4 |
+
# sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
|
5 |
+
import os
|
6 |
+
import traceback
|
7 |
+
from typing import Dict, List
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
import torch
|
12 |
+
from torch.utils.data import DataLoader, Dataset
|
13 |
+
|
14 |
+
version = os.environ.get("version", None)
|
15 |
+
|
16 |
+
from text import cleaned_text_to_sequence
|
17 |
+
|
18 |
+
# from config import exp_dir
|
19 |
+
|
20 |
+
|
21 |
+
def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
|
22 |
+
seq = sequences[0]
|
23 |
+
ndim = seq.ndim
|
24 |
+
if axis < 0:
|
25 |
+
axis += ndim
|
26 |
+
dtype = seq.dtype
|
27 |
+
pad_value = dtype.type(pad_value)
|
28 |
+
seq_lengths = [seq.shape[axis] for seq in sequences]
|
29 |
+
max_length = np.max(seq_lengths)
|
30 |
+
|
31 |
+
padded_sequences = []
|
32 |
+
for seq, length in zip(sequences, seq_lengths):
|
33 |
+
padding = [(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (ndim - axis - 1)
|
34 |
+
padded_seq = np.pad(seq, padding, mode="constant", constant_values=pad_value)
|
35 |
+
padded_sequences.append(padded_seq)
|
36 |
+
batch = np.stack(padded_sequences)
|
37 |
+
return batch
|
38 |
+
|
39 |
+
|
40 |
+
class Text2SemanticDataset(Dataset):
|
41 |
+
"""dataset class for text tokens to semantic model training."""
|
42 |
+
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
phoneme_path: str,
|
46 |
+
semantic_path: str,
|
47 |
+
max_sample: int = None,
|
48 |
+
max_sec: int = 100,
|
49 |
+
pad_val: int = 1024,
|
50 |
+
# min value of phoneme/sec
|
51 |
+
min_ps_ratio: int = 3,
|
52 |
+
# max value of phoneme/sec
|
53 |
+
max_ps_ratio: int = 25,
|
54 |
+
) -> None:
|
55 |
+
super().__init__()
|
56 |
+
|
57 |
+
self.semantic_data = pd.read_csv(
|
58 |
+
semantic_path,
|
59 |
+
delimiter="\t",
|
60 |
+
encoding="utf-8",
|
61 |
+
)
|
62 |
+
# get dict
|
63 |
+
self.path2 = phoneme_path # "%s/2-name2text.txt"%exp_dir#phoneme_path
|
64 |
+
self.path3 = "%s/3-bert" % (
|
65 |
+
os.path.dirname(
|
66 |
+
phoneme_path,
|
67 |
+
)
|
68 |
+
) # "%s/3-bert"%exp_dir#bert_dir
|
69 |
+
self.path6 = semantic_path # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
|
70 |
+
assert os.path.exists(self.path2)
|
71 |
+
assert os.path.exists(self.path6)
|
72 |
+
self.phoneme_data = {}
|
73 |
+
with open(self.path2, "r", encoding="utf8") as f:
|
74 |
+
lines = f.read().strip("\n").split("\n")
|
75 |
+
|
76 |
+
for line in lines:
|
77 |
+
tmp = line.split("\t")
|
78 |
+
if len(tmp) != 4:
|
79 |
+
continue
|
80 |
+
self.phoneme_data[tmp[0]] = [tmp[1], tmp[2], tmp[3]]
|
81 |
+
|
82 |
+
# self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
|
83 |
+
# pad for semantic tokens
|
84 |
+
self.PAD: int = pad_val
|
85 |
+
# self.hz = 25
|
86 |
+
# with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
|
87 |
+
# data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
|
88 |
+
# self.hz=int(data[:-2])#
|
89 |
+
self.hz = int(os.environ.get("hz", "25hz")[:-2])
|
90 |
+
|
91 |
+
# max seconds of semantic token
|
92 |
+
self.max_sec = max_sec
|
93 |
+
self.min_ps_ratio = min_ps_ratio
|
94 |
+
self.max_ps_ratio = max_ps_ratio
|
95 |
+
|
96 |
+
if max_sample is not None:
|
97 |
+
self.semantic_data = self.semantic_data[:max_sample]
|
98 |
+
|
99 |
+
# {idx: (semantic, phoneme)}
|
100 |
+
# semantic list, phoneme list
|
101 |
+
self.semantic_phoneme = []
|
102 |
+
self.item_names = []
|
103 |
+
|
104 |
+
self.inited = False
|
105 |
+
|
106 |
+
if not self.inited:
|
107 |
+
# 调用初始化函数
|
108 |
+
self.init_batch()
|
109 |
+
self.inited = True
|
110 |
+
del self.semantic_data
|
111 |
+
del self.phoneme_data
|
112 |
+
# self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
|
113 |
+
# self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
|
114 |
+
|
115 |
+
def init_batch(self):
|
116 |
+
semantic_data_len = len(self.semantic_data)
|
117 |
+
phoneme_data_len = len(self.phoneme_data.keys())
|
118 |
+
print("semantic_data_len:", semantic_data_len)
|
119 |
+
print("phoneme_data_len:", phoneme_data_len)
|
120 |
+
print(self.semantic_data)
|
121 |
+
idx = 0
|
122 |
+
num_not_in = 0
|
123 |
+
num_deleted_bigger = 0
|
124 |
+
num_deleted_ps = 0
|
125 |
+
for i in range(semantic_data_len):
|
126 |
+
# 先依次遍历
|
127 |
+
# get str
|
128 |
+
item_name = self.semantic_data.iloc[i, 0]
|
129 |
+
# print(self.phoneme_data)
|
130 |
+
try:
|
131 |
+
phoneme, word2ph, text = self.phoneme_data[item_name]
|
132 |
+
except Exception:
|
133 |
+
traceback.print_exc()
|
134 |
+
# print(f"{item_name} not in self.phoneme_data !")
|
135 |
+
num_not_in += 1
|
136 |
+
continue
|
137 |
+
|
138 |
+
semantic_str = self.semantic_data.iloc[i, 1]
|
139 |
+
# get token list
|
140 |
+
semantic_ids = [int(idx) for idx in semantic_str.split(" ")]
|
141 |
+
# (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
|
142 |
+
# 过滤掉太长的样��
|
143 |
+
if (
|
144 |
+
len(semantic_ids) > self.max_sec * self.hz
|
145 |
+
): #########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
|
146 |
+
num_deleted_bigger += 1
|
147 |
+
continue
|
148 |
+
# (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
|
149 |
+
phoneme = phoneme.split(" ")
|
150 |
+
|
151 |
+
try:
|
152 |
+
phoneme_ids = cleaned_text_to_sequence(phoneme, version)
|
153 |
+
except:
|
154 |
+
traceback.print_exc()
|
155 |
+
# print(f"{item_name} not in self.phoneme_data !")
|
156 |
+
num_not_in += 1
|
157 |
+
continue
|
158 |
+
# if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
|
159 |
+
if len(phoneme_ids) > self.max_sec * self.hz / 2.5: ###########2:改为恒定限制为semantic/2.5就行
|
160 |
+
num_deleted_ps += 1
|
161 |
+
continue
|
162 |
+
# if len(semantic_ids) > 1000:###########3
|
163 |
+
# num_deleted_bigger += 1
|
164 |
+
# continue
|
165 |
+
|
166 |
+
ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
|
167 |
+
|
168 |
+
if ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio: ##########4#3~25#每秒多少个phone
|
169 |
+
num_deleted_ps += 1
|
170 |
+
# print(item_name)
|
171 |
+
continue
|
172 |
+
|
173 |
+
self.semantic_phoneme.append((semantic_ids, phoneme_ids))
|
174 |
+
idx += 1
|
175 |
+
self.item_names.append(item_name)
|
176 |
+
|
177 |
+
min_num = 100 # 20直接不补#30补了也不存ckpt
|
178 |
+
leng = len(self.semantic_phoneme)
|
179 |
+
if leng < min_num:
|
180 |
+
tmp1 = self.semantic_phoneme
|
181 |
+
tmp2 = self.item_names
|
182 |
+
self.semantic_phoneme = []
|
183 |
+
self.item_names = []
|
184 |
+
for _ in range(max(2, int(min_num / leng))):
|
185 |
+
self.semantic_phoneme += tmp1
|
186 |
+
self.item_names += tmp2
|
187 |
+
if num_not_in > 0:
|
188 |
+
print(f"there are {num_not_in} semantic datas not in phoneme datas")
|
189 |
+
if num_deleted_bigger > 0:
|
190 |
+
print(
|
191 |
+
f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds",
|
192 |
+
)
|
193 |
+
if num_deleted_ps > 0:
|
194 |
+
# 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
|
195 |
+
print(
|
196 |
+
f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}",
|
197 |
+
)
|
198 |
+
"""
|
199 |
+
there are 31 semantic datas not in phoneme datas
|
200 |
+
deleted 34 audios who's duration are bigger than 54 seconds
|
201 |
+
deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
|
202 |
+
dataset.__len__(): 366463
|
203 |
+
|
204 |
+
"""
|
205 |
+
# 345410 for LibriTTS
|
206 |
+
print("dataset.__len__():", self.__len__())
|
207 |
+
|
208 |
+
def __get_item_names__(self) -> List[str]:
|
209 |
+
return self.item_names
|
210 |
+
|
211 |
+
def __len__(self) -> int:
|
212 |
+
return len(self.semantic_phoneme)
|
213 |
+
|
214 |
+
def __getitem__(self, idx: int) -> Dict:
|
215 |
+
semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
|
216 |
+
item_name = self.item_names[idx]
|
217 |
+
phoneme_ids_len = len(phoneme_ids)
|
218 |
+
# semantic tokens target
|
219 |
+
semantic_ids_len = len(semantic_ids)
|
220 |
+
|
221 |
+
flag = 0
|
222 |
+
path_bert = "%s/%s.pt" % (self.path3, item_name)
|
223 |
+
if os.path.exists(path_bert) == True:
|
224 |
+
bert_feature = torch.load(path_bert, map_location="cpu")
|
225 |
+
else:
|
226 |
+
flag = 1
|
227 |
+
if flag == 1:
|
228 |
+
# bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
|
229 |
+
bert_feature = None
|
230 |
+
else:
|
231 |
+
assert bert_feature.shape[-1] == len(phoneme_ids)
|
232 |
+
return {
|
233 |
+
"idx": idx,
|
234 |
+
"phoneme_ids": phoneme_ids,
|
235 |
+
"phoneme_ids_len": phoneme_ids_len,
|
236 |
+
"semantic_ids": semantic_ids,
|
237 |
+
"semantic_ids_len": semantic_ids_len,
|
238 |
+
"bert_feature": bert_feature,
|
239 |
+
}
|
240 |
+
|
241 |
+
def get_sample_length(self, idx: int):
|
242 |
+
semantic_ids = self.semantic_phoneme[idx][0]
|
243 |
+
sec = 1.0 * len(semantic_ids) / self.hz
|
244 |
+
return sec
|
245 |
+
|
246 |
+
def collate(self, examples: List[Dict]) -> Dict:
|
247 |
+
sample_index: List[int] = []
|
248 |
+
phoneme_ids: List[torch.Tensor] = []
|
249 |
+
phoneme_ids_lens: List[int] = []
|
250 |
+
semantic_ids: List[torch.Tensor] = []
|
251 |
+
semantic_ids_lens: List[int] = []
|
252 |
+
# return
|
253 |
+
|
254 |
+
for item in examples:
|
255 |
+
sample_index.append(item["idx"])
|
256 |
+
phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
|
257 |
+
semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
|
258 |
+
phoneme_ids_lens.append(item["phoneme_ids_len"])
|
259 |
+
semantic_ids_lens.append(item["semantic_ids_len"])
|
260 |
+
|
261 |
+
# pad 0
|
262 |
+
phoneme_ids = batch_sequences(phoneme_ids)
|
263 |
+
semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)
|
264 |
+
|
265 |
+
# # convert each batch to torch.tensor
|
266 |
+
phoneme_ids = torch.tensor(phoneme_ids)
|
267 |
+
semantic_ids = torch.tensor(semantic_ids)
|
268 |
+
phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
|
269 |
+
semantic_ids_lens = torch.tensor(semantic_ids_lens)
|
270 |
+
bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
|
271 |
+
bert_padded.zero_()
|
272 |
+
|
273 |
+
for idx, item in enumerate(examples):
|
274 |
+
bert = item["bert_feature"]
|
275 |
+
if bert != None:
|
276 |
+
bert_padded[idx, :, : bert.shape[-1]] = bert
|
277 |
+
|
278 |
+
return {
|
279 |
+
# List[int]
|
280 |
+
"ids": sample_index,
|
281 |
+
# torch.Tensor (B, max_phoneme_length)
|
282 |
+
"phoneme_ids": phoneme_ids,
|
283 |
+
# torch.Tensor (B)
|
284 |
+
"phoneme_ids_len": phoneme_ids_lens,
|
285 |
+
# torch.Tensor (B, max_semantic_ids_length)
|
286 |
+
"semantic_ids": semantic_ids,
|
287 |
+
# torch.Tensor (B)
|
288 |
+
"semantic_ids_len": semantic_ids_lens,
|
289 |
+
# torch.Tensor (B, 1024, max_phoneme_length)
|
290 |
+
"bert_feature": bert_padded,
|
291 |
+
}
|
292 |
+
|
293 |
+
|
294 |
+
if __name__ == "__main__":
|
295 |
+
root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
|
296 |
+
dataset = Text2SemanticDataset(
|
297 |
+
phoneme_path=root_dir + "phoneme_train.npy",
|
298 |
+
semantic_path=root_dir + "semantic_train.tsv",
|
299 |
+
)
|
300 |
+
|
301 |
+
batch_size = 12
|
302 |
+
dataloader = DataLoader(
|
303 |
+
dataset,
|
304 |
+
batch_size=batch_size,
|
305 |
+
collate_fn=dataset.collate,
|
306 |
+
shuffle=False,
|
307 |
+
)
|
308 |
+
for i, batch in enumerate(dataloader):
|
309 |
+
if i % 1000 == 0:
|
310 |
+
print(i)
|
311 |
+
# if i == 0:
|
312 |
+
# print('batch["ids"]:', batch["ids"])
|
313 |
+
# print('batch["phoneme_ids"]:', batch["phoneme_ids"],
|
314 |
+
# batch["phoneme_ids"].shape)
|
315 |
+
# print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
|
316 |
+
# batch["phoneme_ids_len"].shape)
|
317 |
+
# print('batch["semantic_ids"]:', batch["semantic_ids"],
|
318 |
+
# batch["semantic_ids"].shape)
|
319 |
+
# print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
|
320 |
+
# batch["semantic_ids_len"].shape)
|
AR/models/__init__.py
ADDED
File without changes
|
AR/models/t2s_lightning_module.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
|
2 |
+
# reference: https://github.com/lifeiteng/vall-e
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
|
6 |
+
now_dir = os.getcwd()
|
7 |
+
sys.path.append(now_dir)
|
8 |
+
from typing import Dict
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from pytorch_lightning import LightningModule
|
12 |
+
|
13 |
+
from AR.models.t2s_model import Text2SemanticDecoder
|
14 |
+
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
15 |
+
from AR.modules.optim import ScaledAdam
|
16 |
+
|
17 |
+
|
18 |
+
class Text2SemanticLightningModule(LightningModule):
|
19 |
+
def __init__(self, config, output_dir, is_train=True):
|
20 |
+
super().__init__()
|
21 |
+
self.config = config
|
22 |
+
self.top_k = 3
|
23 |
+
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
24 |
+
pretrained_s1 = config.get("pretrained_s1")
|
25 |
+
if pretrained_s1 and is_train:
|
26 |
+
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
27 |
+
print(
|
28 |
+
self.load_state_dict(
|
29 |
+
torch.load(
|
30 |
+
pretrained_s1,
|
31 |
+
map_location="cpu",
|
32 |
+
weights_only=False,
|
33 |
+
)["weight"],
|
34 |
+
)
|
35 |
+
)
|
36 |
+
if is_train:
|
37 |
+
self.automatic_optimization = False
|
38 |
+
self.save_hyperparameters()
|
39 |
+
self.eval_dir = output_dir / "eval"
|
40 |
+
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
41 |
+
|
42 |
+
def training_step(self, batch: Dict, batch_idx: int):
|
43 |
+
opt = self.optimizers()
|
44 |
+
scheduler = self.lr_schedulers()
|
45 |
+
forward = self.model.forward if self.config["train"].get("if_dpo", False) == True else self.model.forward_old
|
46 |
+
loss, acc = forward(
|
47 |
+
batch["phoneme_ids"],
|
48 |
+
batch["phoneme_ids_len"],
|
49 |
+
batch["semantic_ids"],
|
50 |
+
batch["semantic_ids_len"],
|
51 |
+
batch["bert_feature"],
|
52 |
+
)
|
53 |
+
self.manual_backward(loss)
|
54 |
+
if batch_idx > 0 and batch_idx % 4 == 0:
|
55 |
+
opt.step()
|
56 |
+
opt.zero_grad()
|
57 |
+
scheduler.step()
|
58 |
+
|
59 |
+
self.log(
|
60 |
+
"total_loss",
|
61 |
+
loss,
|
62 |
+
on_step=True,
|
63 |
+
on_epoch=True,
|
64 |
+
prog_bar=True,
|
65 |
+
sync_dist=True,
|
66 |
+
)
|
67 |
+
self.log(
|
68 |
+
"lr",
|
69 |
+
scheduler.get_last_lr()[0],
|
70 |
+
on_epoch=True,
|
71 |
+
prog_bar=True,
|
72 |
+
sync_dist=True,
|
73 |
+
)
|
74 |
+
self.log(
|
75 |
+
f"top_{self.top_k}_acc",
|
76 |
+
acc,
|
77 |
+
on_step=True,
|
78 |
+
on_epoch=True,
|
79 |
+
prog_bar=True,
|
80 |
+
sync_dist=True,
|
81 |
+
)
|
82 |
+
|
83 |
+
def validation_step(self, batch: Dict, batch_idx: int):
|
84 |
+
return
|
85 |
+
|
86 |
+
# # get loss
|
87 |
+
# loss, acc = self.model.forward(
|
88 |
+
# batch['phoneme_ids'], batch['phoneme_ids_len'],
|
89 |
+
# batch['semantic_ids'], batch['semantic_ids_len'],
|
90 |
+
# batch['bert_feature']
|
91 |
+
# )
|
92 |
+
#
|
93 |
+
# self.log(
|
94 |
+
# "val_total_loss",
|
95 |
+
# loss,
|
96 |
+
# on_step=True,
|
97 |
+
# on_epoch=True,
|
98 |
+
# prog_bar=True,
|
99 |
+
# sync_dist=True)
|
100 |
+
# self.log(
|
101 |
+
# f"val_top_{self.top_k}_acc",
|
102 |
+
# acc,
|
103 |
+
# on_step=True,
|
104 |
+
# on_epoch=True,
|
105 |
+
# prog_bar=True,
|
106 |
+
# sync_dist=True)
|
107 |
+
#
|
108 |
+
# # get infer output
|
109 |
+
# semantic_len = batch['semantic_ids'].size(1)
|
110 |
+
# prompt_len = min(int(semantic_len * 0.5), 150)
|
111 |
+
# prompt = batch['semantic_ids'][:, :prompt_len]
|
112 |
+
# pred_semantic = self.model.infer(batch['phoneme_ids'],
|
113 |
+
# batch['phoneme_ids_len'], prompt,
|
114 |
+
# batch['bert_feature']
|
115 |
+
# )
|
116 |
+
# save_name = f'semantic_toks_{batch_idx}.pt'
|
117 |
+
# save_path = os.path.join(self.eval_dir, save_name)
|
118 |
+
# torch.save(pred_semantic.detach().cpu(), save_path)
|
119 |
+
|
120 |
+
def configure_optimizers(self):
|
121 |
+
model_parameters = self.model.parameters()
|
122 |
+
parameters_names = []
|
123 |
+
parameters_names.append([name_param_pair[0] for name_param_pair in self.model.named_parameters()])
|
124 |
+
lm_opt = ScaledAdam(
|
125 |
+
model_parameters,
|
126 |
+
lr=0.01,
|
127 |
+
betas=(0.9, 0.95),
|
128 |
+
clipping_scale=2.0,
|
129 |
+
parameters_names=parameters_names,
|
130 |
+
show_dominant_parameters=False,
|
131 |
+
clipping_update_period=1000,
|
132 |
+
)
|
133 |
+
|
134 |
+
return {
|
135 |
+
"optimizer": lm_opt,
|
136 |
+
"lr_scheduler": {
|
137 |
+
"scheduler": WarmupCosineLRSchedule(
|
138 |
+
lm_opt,
|
139 |
+
init_lr=self.config["optimizer"]["lr_init"],
|
140 |
+
peak_lr=self.config["optimizer"]["lr"],
|
141 |
+
end_lr=self.config["optimizer"]["lr_end"],
|
142 |
+
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
143 |
+
total_steps=self.config["optimizer"]["decay_steps"],
|
144 |
+
)
|
145 |
+
},
|
146 |
+
}
|
AR/models/t2s_lightning_module_onnx.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
|
2 |
+
# reference: https://github.com/lifeiteng/vall-e
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
|
6 |
+
now_dir = os.getcwd()
|
7 |
+
sys.path.append(now_dir)
|
8 |
+
from typing import Dict
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from pytorch_lightning import LightningModule
|
12 |
+
|
13 |
+
from AR.models.t2s_model_onnx import Text2SemanticDecoder
|
14 |
+
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
15 |
+
from AR.modules.optim import ScaledAdam
|
16 |
+
|
17 |
+
|
18 |
+
class Text2SemanticLightningModule(LightningModule):
|
19 |
+
def __init__(self, config, output_dir, is_train=True):
|
20 |
+
super().__init__()
|
21 |
+
self.config = config
|
22 |
+
self.top_k = 3
|
23 |
+
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
24 |
+
pretrained_s1 = config.get("pretrained_s1")
|
25 |
+
if pretrained_s1 and is_train:
|
26 |
+
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
27 |
+
print(
|
28 |
+
self.load_state_dict(
|
29 |
+
torch.load(
|
30 |
+
pretrained_s1,
|
31 |
+
map_location="cpu",
|
32 |
+
)["weight"],
|
33 |
+
),
|
34 |
+
)
|
35 |
+
if is_train:
|
36 |
+
self.automatic_optimization = False
|
37 |
+
self.save_hyperparameters()
|
38 |
+
self.eval_dir = output_dir / "eval"
|
39 |
+
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
40 |
+
|
41 |
+
def training_step(self, batch: Dict, batch_idx: int):
|
42 |
+
opt = self.optimizers()
|
43 |
+
scheduler = self.lr_schedulers()
|
44 |
+
loss, acc = self.model.forward(
|
45 |
+
batch["phoneme_ids"],
|
46 |
+
batch["phoneme_ids_len"],
|
47 |
+
batch["semantic_ids"],
|
48 |
+
batch["semantic_ids_len"],
|
49 |
+
batch["bert_feature"],
|
50 |
+
)
|
51 |
+
self.manual_backward(loss)
|
52 |
+
if batch_idx > 0 and batch_idx % 4 == 0:
|
53 |
+
opt.step()
|
54 |
+
opt.zero_grad()
|
55 |
+
scheduler.step()
|
56 |
+
|
57 |
+
self.log(
|
58 |
+
"total_loss",
|
59 |
+
loss,
|
60 |
+
on_step=True,
|
61 |
+
on_epoch=True,
|
62 |
+
prog_bar=True,
|
63 |
+
sync_dist=True,
|
64 |
+
)
|
65 |
+
self.log(
|
66 |
+
"lr",
|
67 |
+
scheduler.get_last_lr()[0],
|
68 |
+
on_epoch=True,
|
69 |
+
prog_bar=True,
|
70 |
+
sync_dist=True,
|
71 |
+
)
|
72 |
+
self.log(
|
73 |
+
f"top_{self.top_k}_acc",
|
74 |
+
acc,
|
75 |
+
on_step=True,
|
76 |
+
on_epoch=True,
|
77 |
+
prog_bar=True,
|
78 |
+
sync_dist=True,
|
79 |
+
)
|
80 |
+
|
81 |
+
def validation_step(self, batch: Dict, batch_idx: int):
|
82 |
+
return
|
83 |
+
|
84 |
+
def configure_optimizers(self):
|
85 |
+
model_parameters = self.model.parameters()
|
86 |
+
parameters_names = []
|
87 |
+
parameters_names.append([name_param_pair[0] for name_param_pair in self.model.named_parameters()])
|
88 |
+
lm_opt = ScaledAdam(
|
89 |
+
model_parameters,
|
90 |
+
lr=0.01,
|
91 |
+
betas=(0.9, 0.95),
|
92 |
+
clipping_scale=2.0,
|
93 |
+
parameters_names=parameters_names,
|
94 |
+
show_dominant_parameters=False,
|
95 |
+
clipping_update_period=1000,
|
96 |
+
)
|
97 |
+
|
98 |
+
return {
|
99 |
+
"optimizer": lm_opt,
|
100 |
+
"lr_scheduler": {
|
101 |
+
"scheduler": WarmupCosineLRSchedule(
|
102 |
+
lm_opt,
|
103 |
+
init_lr=self.config["optimizer"]["lr_init"],
|
104 |
+
peak_lr=self.config["optimizer"]["lr"],
|
105 |
+
end_lr=self.config["optimizer"]["lr_end"],
|
106 |
+
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
107 |
+
total_steps=self.config["optimizer"]["decay_steps"],
|
108 |
+
)
|
109 |
+
},
|
110 |
+
}
|
AR/models/t2s_model.py
ADDED
@@ -0,0 +1,935 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
2 |
+
# reference: https://github.com/lifeiteng/vall-e
|
3 |
+
import math
|
4 |
+
from typing import List, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
from torchmetrics.classification import MulticlassAccuracy
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from AR.models.utils import (
|
13 |
+
dpo_loss,
|
14 |
+
get_batch_logps,
|
15 |
+
make_pad_mask,
|
16 |
+
make_pad_mask_left,
|
17 |
+
make_reject_y,
|
18 |
+
sample,
|
19 |
+
topk_sampling,
|
20 |
+
)
|
21 |
+
from AR.modules.embedding import SinePositionalEmbedding, TokenEmbedding
|
22 |
+
from AR.modules.transformer import LayerNorm, TransformerEncoder, TransformerEncoderLayer
|
23 |
+
|
24 |
+
default_config = {
|
25 |
+
"embedding_dim": 512,
|
26 |
+
"hidden_dim": 512,
|
27 |
+
"num_head": 8,
|
28 |
+
"num_layers": 12,
|
29 |
+
"num_codebook": 8,
|
30 |
+
"p_dropout": 0.0,
|
31 |
+
"vocab_size": 1024 + 1,
|
32 |
+
"phoneme_vocab_size": 512,
|
33 |
+
"EOS": 1024,
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
# @torch.jit.script ## 使用的话首次推理会非常慢,而且推理速度不稳定
|
38 |
+
# Efficient implementation equivalent to the following:
|
39 |
+
def scaled_dot_product_attention(
|
40 |
+
query: torch.Tensor,
|
41 |
+
key: torch.Tensor,
|
42 |
+
value: torch.Tensor,
|
43 |
+
attn_mask: Optional[torch.Tensor] = None,
|
44 |
+
scale: Optional[torch.Tensor] = None,
|
45 |
+
) -> torch.Tensor:
|
46 |
+
B, H, L, S = query.size(0), query.size(1), query.size(-2), key.size(-2)
|
47 |
+
if scale is None:
|
48 |
+
scale_factor = torch.tensor(1 / math.sqrt(query.size(-1)))
|
49 |
+
else:
|
50 |
+
scale_factor = scale
|
51 |
+
attn_bias = torch.zeros(B, H, L, S, dtype=query.dtype, device=query.device)
|
52 |
+
|
53 |
+
if attn_mask is not None:
|
54 |
+
if attn_mask.dtype == torch.bool:
|
55 |
+
attn_bias.masked_fill_(attn_mask, float("-inf"))
|
56 |
+
else:
|
57 |
+
attn_bias += attn_mask
|
58 |
+
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
59 |
+
attn_weight += attn_bias
|
60 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
61 |
+
|
62 |
+
if attn_mask is not None:
|
63 |
+
if attn_mask.dtype == torch.bool:
|
64 |
+
attn_weight.masked_fill_(attn_mask, 0)
|
65 |
+
else:
|
66 |
+
attn_mask[attn_mask != float("-inf")] = 0
|
67 |
+
attn_mask[attn_mask == float("-inf")] = 1
|
68 |
+
attn_weight.masked_fill_(attn_mask, 0)
|
69 |
+
|
70 |
+
return attn_weight @ value
|
71 |
+
|
72 |
+
|
73 |
+
@torch.jit.script
|
74 |
+
class T2SMLP:
|
75 |
+
def __init__(self, w1, b1, w2, b2):
|
76 |
+
self.w1 = w1
|
77 |
+
self.b1 = b1
|
78 |
+
self.w2 = w2
|
79 |
+
self.b2 = b2
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
x = F.relu(F.linear(x, self.w1, self.b1))
|
83 |
+
x = F.linear(x, self.w2, self.b2)
|
84 |
+
return x
|
85 |
+
|
86 |
+
|
87 |
+
@torch.jit.script
|
88 |
+
class T2SBlock:
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
num_heads,
|
92 |
+
hidden_dim: int,
|
93 |
+
mlp: T2SMLP,
|
94 |
+
qkv_w,
|
95 |
+
qkv_b,
|
96 |
+
out_w,
|
97 |
+
out_b,
|
98 |
+
norm_w1,
|
99 |
+
norm_b1,
|
100 |
+
norm_eps1,
|
101 |
+
norm_w2,
|
102 |
+
norm_b2,
|
103 |
+
norm_eps2,
|
104 |
+
):
|
105 |
+
self.num_heads = num_heads
|
106 |
+
self.mlp = mlp
|
107 |
+
self.hidden_dim: int = hidden_dim
|
108 |
+
self.qkv_w = qkv_w
|
109 |
+
self.qkv_b = qkv_b
|
110 |
+
self.out_w = out_w
|
111 |
+
self.out_b = out_b
|
112 |
+
self.norm_w1 = norm_w1
|
113 |
+
self.norm_b1 = norm_b1
|
114 |
+
self.norm_eps1 = norm_eps1
|
115 |
+
self.norm_w2 = norm_w2
|
116 |
+
self.norm_b2 = norm_b2
|
117 |
+
self.norm_eps2 = norm_eps2
|
118 |
+
|
119 |
+
self.false = torch.tensor(False, dtype=torch.bool)
|
120 |
+
|
121 |
+
@torch.jit.ignore
|
122 |
+
def to_mask(
|
123 |
+
self,
|
124 |
+
x: torch.Tensor,
|
125 |
+
padding_mask: Optional[torch.Tensor],
|
126 |
+
):
|
127 |
+
if padding_mask is None:
|
128 |
+
return x
|
129 |
+
|
130 |
+
if padding_mask.dtype == torch.bool:
|
131 |
+
return x.masked_fill(padding_mask, 0)
|
132 |
+
else:
|
133 |
+
return x * padding_mask
|
134 |
+
|
135 |
+
def process_prompt(
|
136 |
+
self,
|
137 |
+
x: torch.Tensor,
|
138 |
+
attn_mask: torch.Tensor,
|
139 |
+
padding_mask: Optional[torch.Tensor] = None,
|
140 |
+
torch_sdpa: bool = True,
|
141 |
+
):
|
142 |
+
q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
143 |
+
|
144 |
+
batch_size = q.shape[0]
|
145 |
+
q_len = q.shape[1]
|
146 |
+
kv_len = k.shape[1]
|
147 |
+
|
148 |
+
q = self.to_mask(q, padding_mask)
|
149 |
+
k_cache = self.to_mask(k, padding_mask)
|
150 |
+
v_cache = self.to_mask(v, padding_mask)
|
151 |
+
|
152 |
+
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
153 |
+
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
154 |
+
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
155 |
+
|
156 |
+
if torch_sdpa:
|
157 |
+
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
|
158 |
+
else:
|
159 |
+
attn = scaled_dot_product_attention(q, k, v, attn_mask)
|
160 |
+
|
161 |
+
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
|
162 |
+
attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
|
163 |
+
|
164 |
+
x = x + attn
|
165 |
+
x = F.layer_norm(x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1)
|
166 |
+
x = x + self.mlp.forward(x)
|
167 |
+
x = F.layer_norm(
|
168 |
+
x,
|
169 |
+
[self.hidden_dim],
|
170 |
+
self.norm_w2,
|
171 |
+
self.norm_b2,
|
172 |
+
self.norm_eps2,
|
173 |
+
)
|
174 |
+
return x, k_cache, v_cache
|
175 |
+
|
176 |
+
def decode_next_token(
|
177 |
+
self,
|
178 |
+
x: torch.Tensor,
|
179 |
+
k_cache: torch.Tensor,
|
180 |
+
v_cache: torch.Tensor,
|
181 |
+
attn_mask: torch.Tensor = None,
|
182 |
+
torch_sdpa: bool = True,
|
183 |
+
):
|
184 |
+
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
185 |
+
|
186 |
+
k_cache = torch.cat([k_cache, k], dim=1)
|
187 |
+
v_cache = torch.cat([v_cache, v], dim=1)
|
188 |
+
|
189 |
+
batch_size = q.shape[0]
|
190 |
+
q_len = q.shape[1]
|
191 |
+
kv_len = k_cache.shape[1]
|
192 |
+
|
193 |
+
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
194 |
+
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
195 |
+
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
196 |
+
|
197 |
+
if torch_sdpa:
|
198 |
+
attn = F.scaled_dot_product_attention(q, k, v, (~attn_mask) if attn_mask is not None else None)
|
199 |
+
else:
|
200 |
+
attn = scaled_dot_product_attention(q, k, v, attn_mask)
|
201 |
+
|
202 |
+
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
|
203 |
+
attn = F.linear(attn, self.out_w, self.out_b)
|
204 |
+
|
205 |
+
x = x + attn
|
206 |
+
x = F.layer_norm(
|
207 |
+
x,
|
208 |
+
[self.hidden_dim],
|
209 |
+
self.norm_w1,
|
210 |
+
self.norm_b1,
|
211 |
+
self.norm_eps1,
|
212 |
+
)
|
213 |
+
x = x + self.mlp.forward(x)
|
214 |
+
x = F.layer_norm(
|
215 |
+
x,
|
216 |
+
[self.hidden_dim],
|
217 |
+
self.norm_w2,
|
218 |
+
self.norm_b2,
|
219 |
+
self.norm_eps2,
|
220 |
+
)
|
221 |
+
return x, k_cache, v_cache
|
222 |
+
|
223 |
+
|
224 |
+
@torch.jit.script
|
225 |
+
class T2STransformer:
|
226 |
+
def __init__(self, num_blocks: int, blocks: List[T2SBlock]):
|
227 |
+
self.num_blocks: int = num_blocks
|
228 |
+
self.blocks = blocks
|
229 |
+
|
230 |
+
def process_prompt(
|
231 |
+
self,
|
232 |
+
x: torch.Tensor,
|
233 |
+
attn_mask: torch.Tensor,
|
234 |
+
padding_mask: Optional[torch.Tensor] = None,
|
235 |
+
torch_sdpa: bool = True,
|
236 |
+
):
|
237 |
+
k_cache: List[torch.Tensor] = []
|
238 |
+
v_cache: List[torch.Tensor] = []
|
239 |
+
for i in range(self.num_blocks):
|
240 |
+
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask, torch_sdpa)
|
241 |
+
k_cache.append(k_cache_)
|
242 |
+
v_cache.append(v_cache_)
|
243 |
+
return x, k_cache, v_cache
|
244 |
+
|
245 |
+
def decode_next_token(
|
246 |
+
self,
|
247 |
+
x: torch.Tensor,
|
248 |
+
k_cache: List[torch.Tensor],
|
249 |
+
v_cache: List[torch.Tensor],
|
250 |
+
attn_mask: torch.Tensor = None,
|
251 |
+
torch_sdpa: bool = True,
|
252 |
+
):
|
253 |
+
for i in range(self.num_blocks):
|
254 |
+
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(
|
255 |
+
x, k_cache[i], v_cache[i], attn_mask, torch_sdpa
|
256 |
+
)
|
257 |
+
return x, k_cache, v_cache
|
258 |
+
|
259 |
+
|
260 |
+
class Text2SemanticDecoder(nn.Module):
|
261 |
+
def __init__(self, config, norm_first=False, top_k=3):
|
262 |
+
super(Text2SemanticDecoder, self).__init__()
|
263 |
+
self.model_dim = config["model"]["hidden_dim"]
|
264 |
+
self.embedding_dim = config["model"]["embedding_dim"]
|
265 |
+
self.num_head = config["model"]["head"]
|
266 |
+
self.num_layers = config["model"]["n_layer"]
|
267 |
+
self.norm_first = norm_first
|
268 |
+
self.vocab_size = config["model"]["vocab_size"]
|
269 |
+
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
270 |
+
self.p_dropout = config["model"]["dropout"]
|
271 |
+
self.EOS = config["model"]["EOS"]
|
272 |
+
self.norm_first = norm_first
|
273 |
+
assert self.EOS == self.vocab_size - 1
|
274 |
+
# should be same as num of kmeans bin
|
275 |
+
# assert self.EOS == 1024
|
276 |
+
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
277 |
+
self.ar_text_embedding = TokenEmbedding(
|
278 |
+
self.embedding_dim,
|
279 |
+
self.phoneme_vocab_size,
|
280 |
+
self.p_dropout,
|
281 |
+
)
|
282 |
+
self.ar_text_position = SinePositionalEmbedding(
|
283 |
+
self.embedding_dim,
|
284 |
+
dropout=0.1,
|
285 |
+
scale=False,
|
286 |
+
alpha=True,
|
287 |
+
)
|
288 |
+
self.ar_audio_embedding = TokenEmbedding(
|
289 |
+
self.embedding_dim,
|
290 |
+
self.vocab_size,
|
291 |
+
self.p_dropout,
|
292 |
+
)
|
293 |
+
self.ar_audio_position = SinePositionalEmbedding(
|
294 |
+
self.embedding_dim,
|
295 |
+
dropout=0.1,
|
296 |
+
scale=False,
|
297 |
+
alpha=True,
|
298 |
+
)
|
299 |
+
|
300 |
+
self.h = TransformerEncoder(
|
301 |
+
TransformerEncoderLayer(
|
302 |
+
d_model=self.model_dim,
|
303 |
+
nhead=self.num_head,
|
304 |
+
dim_feedforward=self.model_dim * 4,
|
305 |
+
dropout=0.1,
|
306 |
+
batch_first=True,
|
307 |
+
norm_first=norm_first,
|
308 |
+
),
|
309 |
+
num_layers=self.num_layers,
|
310 |
+
norm=LayerNorm(self.model_dim) if norm_first else None,
|
311 |
+
)
|
312 |
+
|
313 |
+
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
314 |
+
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
315 |
+
|
316 |
+
self.ar_accuracy_metric = MulticlassAccuracy(
|
317 |
+
self.vocab_size,
|
318 |
+
top_k=top_k,
|
319 |
+
average="micro",
|
320 |
+
multidim_average="global",
|
321 |
+
ignore_index=self.EOS,
|
322 |
+
)
|
323 |
+
|
324 |
+
blocks = []
|
325 |
+
|
326 |
+
for i in range(self.num_layers):
|
327 |
+
layer = self.h.layers[i]
|
328 |
+
t2smlp = T2SMLP(
|
329 |
+
layer.linear1.weight,
|
330 |
+
layer.linear1.bias,
|
331 |
+
layer.linear2.weight,
|
332 |
+
layer.linear2.bias,
|
333 |
+
)
|
334 |
+
|
335 |
+
block = T2SBlock(
|
336 |
+
self.num_head,
|
337 |
+
self.model_dim,
|
338 |
+
t2smlp,
|
339 |
+
layer.self_attn.in_proj_weight,
|
340 |
+
layer.self_attn.in_proj_bias,
|
341 |
+
layer.self_attn.out_proj.weight,
|
342 |
+
layer.self_attn.out_proj.bias,
|
343 |
+
layer.norm1.weight,
|
344 |
+
layer.norm1.bias,
|
345 |
+
layer.norm1.eps,
|
346 |
+
layer.norm2.weight,
|
347 |
+
layer.norm2.bias,
|
348 |
+
layer.norm2.eps,
|
349 |
+
)
|
350 |
+
|
351 |
+
blocks.append(block)
|
352 |
+
|
353 |
+
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
|
354 |
+
|
355 |
+
def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
|
356 |
+
x = self.ar_text_embedding(x)
|
357 |
+
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
358 |
+
x = self.ar_text_position(x)
|
359 |
+
x_mask = make_pad_mask(x_lens)
|
360 |
+
|
361 |
+
y_mask = make_pad_mask(y_lens)
|
362 |
+
y_mask_int = y_mask.type(torch.int64)
|
363 |
+
codes = y.type(torch.int64) * (1 - y_mask_int)
|
364 |
+
|
365 |
+
# Training
|
366 |
+
# AR Decoder
|
367 |
+
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
|
368 |
+
x_len = x_lens.max()
|
369 |
+
y_len = y_lens.max()
|
370 |
+
y_emb = self.ar_audio_embedding(y)
|
371 |
+
y_pos = self.ar_audio_position(y_emb)
|
372 |
+
|
373 |
+
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
374 |
+
|
375 |
+
ar_xy_padding_mask = xy_padding_mask
|
376 |
+
|
377 |
+
x_attn_mask = F.pad(
|
378 |
+
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
379 |
+
(0, y_len),
|
380 |
+
value=True,
|
381 |
+
)
|
382 |
+
# x_attn_mask[:, x_len]=False
|
383 |
+
y_attn_mask = F.pad(
|
384 |
+
torch.triu(
|
385 |
+
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
386 |
+
diagonal=1,
|
387 |
+
),
|
388 |
+
(x_len, 0),
|
389 |
+
value=False,
|
390 |
+
)
|
391 |
+
|
392 |
+
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
393 |
+
bsz, src_len = x.shape[0], x_len + y_len
|
394 |
+
_xy_padding_mask = (
|
395 |
+
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
396 |
+
.expand(-1, self.num_head, -1, -1)
|
397 |
+
.reshape(bsz * self.num_head, 1, src_len)
|
398 |
+
)
|
399 |
+
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
400 |
+
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
401 |
+
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
402 |
+
xy_attn_mask = new_attn_mask
|
403 |
+
# x 和完整的 y 一次性输入模型
|
404 |
+
xy_pos = torch.concat([x, y_pos], dim=1)
|
405 |
+
|
406 |
+
return xy_pos, xy_attn_mask, targets
|
407 |
+
|
408 |
+
def forward(self, x, x_lens, y, y_lens, bert_feature):
|
409 |
+
"""
|
410 |
+
x: phoneme_ids
|
411 |
+
y: semantic_ids
|
412 |
+
"""
|
413 |
+
|
414 |
+
reject_y, reject_y_lens = make_reject_y(y, y_lens)
|
415 |
+
|
416 |
+
xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature)
|
417 |
+
|
418 |
+
xy_dec, _ = self.h(
|
419 |
+
(xy_pos, None),
|
420 |
+
mask=xy_attn_mask,
|
421 |
+
)
|
422 |
+
x_len = x_lens.max()
|
423 |
+
logits = self.ar_predict_layer(xy_dec[:, x_len:])
|
424 |
+
|
425 |
+
###### DPO #############
|
426 |
+
reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(
|
427 |
+
x, x_lens, reject_y, reject_y_lens, bert_feature
|
428 |
+
)
|
429 |
+
|
430 |
+
reject_xy_dec, _ = self.h(
|
431 |
+
(reject_xy_pos, None),
|
432 |
+
mask=reject_xy_attn_mask,
|
433 |
+
)
|
434 |
+
x_len = x_lens.max()
|
435 |
+
reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len:])
|
436 |
+
|
437 |
+
# loss
|
438 |
+
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
439 |
+
|
440 |
+
loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum")
|
441 |
+
acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item()
|
442 |
+
|
443 |
+
A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets)
|
444 |
+
loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True)
|
445 |
+
|
446 |
+
loss = loss_1 + loss_2
|
447 |
+
|
448 |
+
return loss, acc
|
449 |
+
|
450 |
+
def forward_old(self, x, x_lens, y, y_lens, bert_feature):
|
451 |
+
"""
|
452 |
+
x: phoneme_ids
|
453 |
+
y: semantic_ids
|
454 |
+
"""
|
455 |
+
x = self.ar_text_embedding(x)
|
456 |
+
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
457 |
+
x = self.ar_text_position(x)
|
458 |
+
x_mask = make_pad_mask(x_lens)
|
459 |
+
|
460 |
+
y_mask = make_pad_mask(y_lens)
|
461 |
+
y_mask_int = y_mask.type(torch.int64)
|
462 |
+
codes = y.type(torch.int64) * (1 - y_mask_int)
|
463 |
+
|
464 |
+
# Training
|
465 |
+
# AR Decoder
|
466 |
+
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
|
467 |
+
x_len = x_lens.max()
|
468 |
+
y_len = y_lens.max()
|
469 |
+
y_emb = self.ar_audio_embedding(y)
|
470 |
+
y_pos = self.ar_audio_position(y_emb)
|
471 |
+
|
472 |
+
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
473 |
+
ar_xy_padding_mask = xy_padding_mask
|
474 |
+
|
475 |
+
x_attn_mask = F.pad(
|
476 |
+
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
477 |
+
(0, y_len),
|
478 |
+
value=True,
|
479 |
+
)
|
480 |
+
y_attn_mask = F.pad(
|
481 |
+
torch.triu(
|
482 |
+
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
483 |
+
diagonal=1,
|
484 |
+
),
|
485 |
+
(x_len, 0),
|
486 |
+
value=False,
|
487 |
+
)
|
488 |
+
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
489 |
+
bsz, src_len = x.shape[0], x_len + y_len
|
490 |
+
_xy_padding_mask = (
|
491 |
+
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
492 |
+
.expand(-1, self.num_head, -1, -1)
|
493 |
+
.reshape(bsz * self.num_head, 1, src_len)
|
494 |
+
)
|
495 |
+
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
496 |
+
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
497 |
+
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
498 |
+
xy_attn_mask = new_attn_mask
|
499 |
+
# x 和完整的 y 一次性输入模型
|
500 |
+
xy_pos = torch.concat([x, y_pos], dim=1)
|
501 |
+
xy_dec, _ = self.h(
|
502 |
+
(xy_pos, None),
|
503 |
+
mask=xy_attn_mask,
|
504 |
+
)
|
505 |
+
logits = self.ar_predict_layer(xy_dec[:, x_len:]).permute(0, 2, 1)
|
506 |
+
# loss
|
507 |
+
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
508 |
+
loss = F.cross_entropy(logits, targets, reduction="sum")
|
509 |
+
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
|
510 |
+
return loss, acc
|
511 |
+
|
512 |
+
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
|
513 |
+
def infer(
|
514 |
+
self,
|
515 |
+
x,
|
516 |
+
x_lens,
|
517 |
+
prompts,
|
518 |
+
bert_feature,
|
519 |
+
top_k: int = -100,
|
520 |
+
early_stop_num: int = -1,
|
521 |
+
temperature: float = 1.0,
|
522 |
+
):
|
523 |
+
x = self.ar_text_embedding(x)
|
524 |
+
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
525 |
+
x = self.ar_text_position(x)
|
526 |
+
|
527 |
+
# AR Decoder
|
528 |
+
y = prompts
|
529 |
+
prefix_len = y.shape[1]
|
530 |
+
x_len = x.shape[1]
|
531 |
+
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
532 |
+
stop = False
|
533 |
+
for _ in tqdm(range(1500)):
|
534 |
+
y_emb = self.ar_audio_embedding(y)
|
535 |
+
y_pos = self.ar_audio_position(y_emb)
|
536 |
+
# x 和逐渐增长的 y 一起输入给模型
|
537 |
+
xy_pos = torch.concat([x, y_pos], dim=1)
|
538 |
+
y_len = y.shape[1]
|
539 |
+
x_attn_mask_pad = F.pad(
|
540 |
+
x_attn_mask,
|
541 |
+
(0, y_len),
|
542 |
+
value=True,
|
543 |
+
)
|
544 |
+
y_attn_mask = F.pad(
|
545 |
+
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
546 |
+
(x_len, 0),
|
547 |
+
value=False,
|
548 |
+
)
|
549 |
+
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(y.device)
|
550 |
+
|
551 |
+
xy_dec, _ = self.h(
|
552 |
+
(xy_pos, None),
|
553 |
+
mask=xy_attn_mask,
|
554 |
+
)
|
555 |
+
logits = self.ar_predict_layer(xy_dec[:, -1])
|
556 |
+
samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
557 |
+
|
558 |
+
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
559 |
+
print("use early stop num:", early_stop_num)
|
560 |
+
stop = True
|
561 |
+
|
562 |
+
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
563 |
+
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
564 |
+
stop = True
|
565 |
+
if stop:
|
566 |
+
if prompts.shape[1] == y.shape[1]:
|
567 |
+
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
568 |
+
print("bad zero prediction")
|
569 |
+
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
570 |
+
break
|
571 |
+
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
572 |
+
# print(samples.shape)#[1,1]#第一个1是bs
|
573 |
+
# import os
|
574 |
+
# os._exit(2333)
|
575 |
+
y = torch.concat([y, samples], dim=1)
|
576 |
+
return y
|
577 |
+
|
578 |
+
def pad_y_eos(self, y, y_mask_int, eos_id):
|
579 |
+
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(y_mask_int, (0, 1), value=1)
|
580 |
+
# 错位
|
581 |
+
return targets[:, :-1], targets[:, 1:]
|
582 |
+
|
583 |
+
def infer_panel_batch_infer(
|
584 |
+
self,
|
585 |
+
x: List[torch.LongTensor], #####全部文本token
|
586 |
+
x_lens: torch.LongTensor,
|
587 |
+
prompts: torch.LongTensor, ####参考音频token
|
588 |
+
bert_feature: List[torch.LongTensor],
|
589 |
+
top_k: int = -100,
|
590 |
+
top_p: int = 100,
|
591 |
+
early_stop_num: int = -1,
|
592 |
+
temperature: float = 1.0,
|
593 |
+
repetition_penalty: float = 1.35,
|
594 |
+
**kwargs,
|
595 |
+
):
|
596 |
+
if prompts is None:
|
597 |
+
print("Warning: Prompt free is not supported batch_infer! switch to naive_infer")
|
598 |
+
return self.infer_panel_naive_batched(
|
599 |
+
x,
|
600 |
+
x_lens,
|
601 |
+
prompts,
|
602 |
+
bert_feature,
|
603 |
+
top_k=top_k,
|
604 |
+
top_p=top_p,
|
605 |
+
early_stop_num=early_stop_num,
|
606 |
+
temperature=temperature,
|
607 |
+
**kwargs,
|
608 |
+
)
|
609 |
+
|
610 |
+
max_len = kwargs.get("max_len", x_lens.max())
|
611 |
+
x_list = []
|
612 |
+
for x_item, bert_item in zip(x, bert_feature):
|
613 |
+
# max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
|
614 |
+
x_item = self.ar_text_embedding(x_item.unsqueeze(0))
|
615 |
+
x_item = x_item + self.bert_proj(bert_item.transpose(0, 1).unsqueeze(0))
|
616 |
+
x_item = self.ar_text_position(x_item).squeeze(0)
|
617 |
+
# x_item = F.pad(x_item,(0,0,0,max_len-x_item.shape[0]),value=0) if x_item.shape[0]<max_len else x_item ### padding right
|
618 |
+
x_item = (
|
619 |
+
F.pad(x_item, (0, 0, max_len - x_item.shape[0], 0), value=0) if x_item.shape[0] < max_len else x_item
|
620 |
+
) ### padding left
|
621 |
+
x_list.append(x_item)
|
622 |
+
x: torch.Tensor = torch.stack(x_list, dim=0)
|
623 |
+
|
624 |
+
# AR Decoder
|
625 |
+
y = prompts
|
626 |
+
|
627 |
+
x_len = x.shape[1]
|
628 |
+
stop = False
|
629 |
+
|
630 |
+
k_cache = None
|
631 |
+
v_cache = None
|
632 |
+
################### first step ##########################
|
633 |
+
assert y is not None, "Error: Prompt free is not supported batch_infer!"
|
634 |
+
ref_free = False
|
635 |
+
|
636 |
+
y_emb = self.ar_audio_embedding(y)
|
637 |
+
y_len = y_emb.shape[1]
|
638 |
+
prefix_len = y.shape[1]
|
639 |
+
y_lens = torch.LongTensor([y_emb.shape[1]] * y_emb.shape[0]).to(x.device)
|
640 |
+
y_pos = self.ar_audio_position(y_emb)
|
641 |
+
xy_pos = torch.concat([x, y_pos], dim=1)
|
642 |
+
|
643 |
+
##### create mask #####
|
644 |
+
bsz = x.shape[0]
|
645 |
+
src_len = x_len + y_len
|
646 |
+
y_paddind_mask = make_pad_mask_left(y_lens, y_len)
|
647 |
+
x_paddind_mask = make_pad_mask_left(x_lens, max_len)
|
648 |
+
|
649 |
+
# (bsz, x_len + y_len)
|
650 |
+
padding_mask = torch.concat([x_paddind_mask, y_paddind_mask], dim=1)
|
651 |
+
|
652 |
+
x_mask = F.pad(
|
653 |
+
torch.zeros(x_len, x_len, dtype=torch.bool, device=x.device),
|
654 |
+
(0, y_len),
|
655 |
+
value=True,
|
656 |
+
)
|
657 |
+
|
658 |
+
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
659 |
+
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), diagonal=1),
|
660 |
+
(x_len, 0),
|
661 |
+
value=False,
|
662 |
+
)
|
663 |
+
|
664 |
+
causal_mask = torch.concat([x_mask, y_mask], dim=0).view(1, src_len, src_len).repeat(bsz, 1, 1).to(x.device)
|
665 |
+
# padding_mask = padding_mask.unsqueeze(1) * padding_mask.unsqueeze(2) ### [b, x+y, x+y]
|
666 |
+
### 上面是错误的,会导致padding的token被"看见"
|
667 |
+
|
668 |
+
# 正确的padding_mask应该是:
|
669 |
+
# | pad_len | x_len | y_len |
|
670 |
+
# [[PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
671 |
+
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
672 |
+
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6], 前3行按理说也应该被mask掉,但是为了防止计算attention时不出现nan,还是保留了,不影响结果
|
673 |
+
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
674 |
+
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
675 |
+
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
676 |
+
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
677 |
+
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
678 |
+
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6]]
|
679 |
+
|
680 |
+
padding_mask = padding_mask.view(bsz, 1, src_len).repeat(1, src_len, 1)
|
681 |
+
|
682 |
+
attn_mask: torch.Tensor = causal_mask.logical_or(padding_mask)
|
683 |
+
attn_mask = attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1).bool()
|
684 |
+
|
685 |
+
# 正确的attn_mask应该是这样的:
|
686 |
+
# | pad_len | x_len | y_len |
|
687 |
+
# [[PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
688 |
+
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
689 |
+
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS], 前3行按理说也应该被mask掉,但是为了防止计算attention时不出现nan,还是保留了,不影响结果
|
690 |
+
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
691 |
+
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
692 |
+
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
693 |
+
# [PAD, PAD, PAD, 1, 2, 3, 4, EOS, EOS],
|
694 |
+
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, EOS],
|
695 |
+
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6]]
|
696 |
+
|
697 |
+
###### decode #####
|
698 |
+
y_list = [None] * y.shape[0]
|
699 |
+
batch_idx_map = list(range(y.shape[0]))
|
700 |
+
idx_list = [None] * y.shape[0]
|
701 |
+
for idx in tqdm(range(1500)):
|
702 |
+
if idx == 0:
|
703 |
+
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, attn_mask, None)
|
704 |
+
else:
|
705 |
+
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache, attn_mask)
|
706 |
+
logits = self.ar_predict_layer(xy_dec[:, -1])
|
707 |
+
|
708 |
+
if idx == 0:
|
709 |
+
attn_mask = F.pad(attn_mask[:, :, -1].unsqueeze(-2), (0, 1), value=False)
|
710 |
+
logits = logits[:, :-1]
|
711 |
+
else:
|
712 |
+
attn_mask = F.pad(attn_mask, (0, 1), value=False)
|
713 |
+
|
714 |
+
samples = sample(
|
715 |
+
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
|
716 |
+
)[0]
|
717 |
+
|
718 |
+
y = torch.concat([y, samples], dim=1)
|
719 |
+
|
720 |
+
####### 移除batch中已经生成完毕的序列,进一步优化计算量
|
721 |
+
tokens = torch.argmax(logits, dim=-1)
|
722 |
+
reserved_idx_of_batch_for_y = None
|
723 |
+
if (self.EOS in samples[:, 0]) or (self.EOS in tokens): ###如果生成到EOS,则停止
|
724 |
+
l1 = samples[:, 0] == self.EOS
|
725 |
+
l2 = tokens == self.EOS
|
726 |
+
l = l1.logical_or(l2)
|
727 |
+
removed_idx_of_batch_for_y = torch.where(l == True)[0].tolist()
|
728 |
+
reserved_idx_of_batch_for_y = torch.where(l == False)[0]
|
729 |
+
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
|
730 |
+
for i in removed_idx_of_batch_for_y:
|
731 |
+
batch_index = batch_idx_map[i]
|
732 |
+
idx_list[batch_index] = idx
|
733 |
+
y_list[batch_index] = y[i, :-1]
|
734 |
+
|
735 |
+
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
|
736 |
+
|
737 |
+
# 只保留batch中未生成完毕的序列
|
738 |
+
if reserved_idx_of_batch_for_y is not None:
|
739 |
+
# index = torch.LongTensor(batch_idx_map).to(y.device)
|
740 |
+
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
|
741 |
+
attn_mask = torch.index_select(attn_mask, dim=0, index=reserved_idx_of_batch_for_y)
|
742 |
+
if k_cache is not None:
|
743 |
+
for i in range(len(k_cache)):
|
744 |
+
k_cache[i] = torch.index_select(k_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
|
745 |
+
v_cache[i] = torch.index_select(v_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
|
746 |
+
|
747 |
+
if (early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num) or idx == 1499:
|
748 |
+
print("use early stop num:", early_stop_num)
|
749 |
+
stop = True
|
750 |
+
for i, batch_index in enumerate(batch_idx_map):
|
751 |
+
batch_index = batch_idx_map[i]
|
752 |
+
idx_list[batch_index] = idx
|
753 |
+
y_list[batch_index] = y[i, :-1]
|
754 |
+
|
755 |
+
if None not in idx_list:
|
756 |
+
stop = True
|
757 |
+
|
758 |
+
if stop:
|
759 |
+
if y.shape[1] == 0:
|
760 |
+
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
761 |
+
print("bad zero prediction")
|
762 |
+
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
763 |
+
break
|
764 |
+
|
765 |
+
####################### update next step ###################################
|
766 |
+
y_emb = self.ar_audio_embedding(y[:, -1:])
|
767 |
+
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[
|
768 |
+
:, y_len + idx
|
769 |
+
].to(dtype=y_emb.dtype, device=y_emb.device)
|
770 |
+
|
771 |
+
if None in idx_list:
|
772 |
+
for i in range(x.shape[0]):
|
773 |
+
if idx_list[i] is None:
|
774 |
+
idx_list[i] = 1500 - 1 ###如果没有生成到EOS,就用最大长度代替
|
775 |
+
|
776 |
+
if ref_free:
|
777 |
+
return y_list, [0] * x.shape[0]
|
778 |
+
# print(idx_list)
|
779 |
+
return y_list, idx_list
|
780 |
+
|
781 |
+
def infer_panel_naive_batched(
|
782 |
+
self,
|
783 |
+
x: List[torch.LongTensor], #####全部文本token
|
784 |
+
x_lens: torch.LongTensor,
|
785 |
+
prompts: torch.LongTensor, ####参考音频token
|
786 |
+
bert_feature: List[torch.LongTensor],
|
787 |
+
top_k: int = -100,
|
788 |
+
top_p: int = 100,
|
789 |
+
early_stop_num: int = -1,
|
790 |
+
temperature: float = 1.0,
|
791 |
+
repetition_penalty: float = 1.35,
|
792 |
+
**kwargs,
|
793 |
+
):
|
794 |
+
y_list = []
|
795 |
+
idx_list = []
|
796 |
+
for i in range(len(x)):
|
797 |
+
y, idx = self.infer_panel_naive(
|
798 |
+
x[i].unsqueeze(0),
|
799 |
+
x_lens[i],
|
800 |
+
prompts[i].unsqueeze(0) if prompts is not None else None,
|
801 |
+
bert_feature[i].unsqueeze(0),
|
802 |
+
top_k,
|
803 |
+
top_p,
|
804 |
+
early_stop_num,
|
805 |
+
temperature,
|
806 |
+
repetition_penalty,
|
807 |
+
**kwargs,
|
808 |
+
)
|
809 |
+
y_list.append(y[0])
|
810 |
+
idx_list.append(idx)
|
811 |
+
|
812 |
+
return y_list, idx_list
|
813 |
+
|
814 |
+
def infer_panel_naive(
|
815 |
+
self,
|
816 |
+
x: torch.LongTensor, #####全部文本token
|
817 |
+
x_lens: torch.LongTensor,
|
818 |
+
prompts: torch.LongTensor, ####参考音频token
|
819 |
+
bert_feature: torch.LongTensor,
|
820 |
+
top_k: int = -100,
|
821 |
+
top_p: int = 100,
|
822 |
+
early_stop_num: int = -1,
|
823 |
+
temperature: float = 1.0,
|
824 |
+
repetition_penalty: float = 1.35,
|
825 |
+
**kwargs,
|
826 |
+
):
|
827 |
+
x = self.ar_text_embedding(x)
|
828 |
+
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
829 |
+
x = self.ar_text_position(x)
|
830 |
+
|
831 |
+
# AR Decoder
|
832 |
+
y = prompts
|
833 |
+
|
834 |
+
x_len = x.shape[1]
|
835 |
+
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
836 |
+
stop = False
|
837 |
+
# print(1111111,self.num_layers)
|
838 |
+
|
839 |
+
k_cache = None
|
840 |
+
v_cache = None
|
841 |
+
################### first step ##########################
|
842 |
+
if y is not None:
|
843 |
+
y_emb = self.ar_audio_embedding(y)
|
844 |
+
y_len = y_emb.shape[1]
|
845 |
+
prefix_len = y.shape[1]
|
846 |
+
y_pos = self.ar_audio_position(y_emb)
|
847 |
+
xy_pos = torch.concat([x, y_pos], dim=1)
|
848 |
+
ref_free = False
|
849 |
+
else:
|
850 |
+
y_emb = None
|
851 |
+
y_len = 0
|
852 |
+
prefix_len = 0
|
853 |
+
y_pos = None
|
854 |
+
xy_pos = x
|
855 |
+
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
856 |
+
ref_free = True
|
857 |
+
|
858 |
+
bsz = x.shape[0]
|
859 |
+
src_len = x_len + y_len
|
860 |
+
x_attn_mask_pad = F.pad(
|
861 |
+
x_attn_mask,
|
862 |
+
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
863 |
+
value=True,
|
864 |
+
)
|
865 |
+
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
866 |
+
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
867 |
+
(x_len, 0),
|
868 |
+
value=False,
|
869 |
+
)
|
870 |
+
xy_attn_mask = (
|
871 |
+
torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
872 |
+
.unsqueeze(0)
|
873 |
+
.expand(bsz * self.num_head, -1, -1)
|
874 |
+
.view(bsz, self.num_head, src_len, src_len)
|
875 |
+
.to(device=x.device, dtype=torch.bool)
|
876 |
+
)
|
877 |
+
|
878 |
+
for idx in tqdm(range(1500)):
|
879 |
+
if xy_attn_mask is not None:
|
880 |
+
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
|
881 |
+
else:
|
882 |
+
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
|
883 |
+
|
884 |
+
logits = self.ar_predict_layer(xy_dec[:, -1])
|
885 |
+
|
886 |
+
if idx == 0:
|
887 |
+
xy_attn_mask = None
|
888 |
+
if idx < 11: ###至少预测出10个token不然不给停止(0.4s)
|
889 |
+
logits = logits[:, :-1]
|
890 |
+
|
891 |
+
samples = sample(
|
892 |
+
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
|
893 |
+
)[0]
|
894 |
+
|
895 |
+
y = torch.concat([y, samples], dim=1)
|
896 |
+
|
897 |
+
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
898 |
+
print("use early stop num:", early_stop_num)
|
899 |
+
stop = True
|
900 |
+
|
901 |
+
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
902 |
+
stop = True
|
903 |
+
if stop:
|
904 |
+
if y.shape[1] == 0:
|
905 |
+
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
906 |
+
print("bad zero prediction")
|
907 |
+
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
908 |
+
break
|
909 |
+
|
910 |
+
####################### update next step ###################################
|
911 |
+
y_emb = self.ar_audio_embedding(y[:, -1:])
|
912 |
+
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[
|
913 |
+
:, y_len + idx
|
914 |
+
].to(dtype=y_emb.dtype, device=y_emb.device)
|
915 |
+
|
916 |
+
if ref_free:
|
917 |
+
return y[:, :-1], 0
|
918 |
+
return y[:, :-1], idx
|
919 |
+
|
920 |
+
def infer_panel(
|
921 |
+
self,
|
922 |
+
x: torch.LongTensor, #####全部文本token
|
923 |
+
x_lens: torch.LongTensor,
|
924 |
+
prompts: torch.LongTensor, ####参考音频token
|
925 |
+
bert_feature: torch.LongTensor,
|
926 |
+
top_k: int = -100,
|
927 |
+
top_p: int = 100,
|
928 |
+
early_stop_num: int = -1,
|
929 |
+
temperature: float = 1.0,
|
930 |
+
repetition_penalty: float = 1.35,
|
931 |
+
**kwargs,
|
932 |
+
):
|
933 |
+
return self.infer_panel_naive(
|
934 |
+
x, x_lens, prompts, bert_feature, top_k, top_p, early_stop_num, temperature, repetition_penalty, **kwargs
|
935 |
+
)
|
AR/models/t2s_model_onnx.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
2 |
+
# reference: https://github.com/lifeiteng/vall-e
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from torchmetrics.classification import MulticlassAccuracy
|
7 |
+
|
8 |
+
from AR.modules.embedding_onnx import SinePositionalEmbedding, TokenEmbedding
|
9 |
+
from AR.modules.transformer_onnx import LayerNorm, TransformerEncoder, TransformerEncoderLayer
|
10 |
+
|
11 |
+
default_config = {
|
12 |
+
"embedding_dim": 512,
|
13 |
+
"hidden_dim": 512,
|
14 |
+
"num_head": 8,
|
15 |
+
"num_layers": 12,
|
16 |
+
"num_codebook": 8,
|
17 |
+
"p_dropout": 0.0,
|
18 |
+
"vocab_size": 1024 + 1,
|
19 |
+
"phoneme_vocab_size": 512,
|
20 |
+
"EOS": 1024,
|
21 |
+
}
|
22 |
+
|
23 |
+
inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()
|
24 |
+
|
25 |
+
|
26 |
+
def logits_to_probs(
|
27 |
+
logits,
|
28 |
+
previous_tokens=None,
|
29 |
+
temperature: float = 1.0,
|
30 |
+
top_k=None,
|
31 |
+
top_p=None,
|
32 |
+
repetition_penalty: float = 1.0,
|
33 |
+
):
|
34 |
+
previous_tokens = previous_tokens.squeeze()
|
35 |
+
if previous_tokens is not None and repetition_penalty != 1.0:
|
36 |
+
previous_tokens = previous_tokens.long()
|
37 |
+
score = torch.gather(logits, dim=0, index=previous_tokens)
|
38 |
+
score = torch.where(
|
39 |
+
score < 0,
|
40 |
+
score * repetition_penalty,
|
41 |
+
score / repetition_penalty,
|
42 |
+
)
|
43 |
+
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
44 |
+
|
45 |
+
if top_p is not None and top_p < 1.0:
|
46 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
47 |
+
cum_probs = torch.cumsum(
|
48 |
+
torch.nn.functional.softmax(
|
49 |
+
sorted_logits,
|
50 |
+
dim=-1,
|
51 |
+
),
|
52 |
+
dim=-1,
|
53 |
+
)
|
54 |
+
sorted_indices_to_remove = cum_probs > top_p
|
55 |
+
sorted_indices_to_remove[0] = False # keep at least one option
|
56 |
+
indices_to_remove = sorted_indices_to_remove.scatter(
|
57 |
+
dim=0,
|
58 |
+
index=sorted_indices,
|
59 |
+
src=sorted_indices_to_remove,
|
60 |
+
)
|
61 |
+
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
62 |
+
|
63 |
+
logits = logits / max(temperature, 1e-5)
|
64 |
+
|
65 |
+
if top_k is not None:
|
66 |
+
v, _ = torch.topk(logits, top_k)
|
67 |
+
pivot = v.select(-1, -1).unsqueeze(-1)
|
68 |
+
logits = torch.where(logits < pivot, inf_tensor_value, logits)
|
69 |
+
|
70 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
71 |
+
return probs
|
72 |
+
|
73 |
+
|
74 |
+
def multinomial_sample_one_no_sync(
|
75 |
+
probs_sort,
|
76 |
+
): # Does multinomial sampling without a cuda synchronization
|
77 |
+
q = torch.randn_like(probs_sort)
|
78 |
+
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
79 |
+
|
80 |
+
|
81 |
+
def sample(
|
82 |
+
logits,
|
83 |
+
previous_tokens,
|
84 |
+
**sampling_kwargs,
|
85 |
+
):
|
86 |
+
probs = logits_to_probs(
|
87 |
+
logits=logits,
|
88 |
+
previous_tokens=previous_tokens,
|
89 |
+
**sampling_kwargs,
|
90 |
+
)
|
91 |
+
idx_next = multinomial_sample_one_no_sync(probs)
|
92 |
+
return idx_next, probs
|
93 |
+
|
94 |
+
|
95 |
+
class OnnxEncoder(nn.Module):
|
96 |
+
def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
|
97 |
+
super().__init__()
|
98 |
+
self.ar_text_embedding = ar_text_embedding
|
99 |
+
self.bert_proj = bert_proj
|
100 |
+
self.ar_text_position = ar_text_position
|
101 |
+
|
102 |
+
def forward(self, x, bert_feature):
|
103 |
+
x = self.ar_text_embedding(x)
|
104 |
+
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
105 |
+
return self.ar_text_position(x)
|
106 |
+
|
107 |
+
|
108 |
+
class T2SFirstStageDecoder(nn.Module):
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
ar_audio_embedding,
|
112 |
+
ar_audio_position,
|
113 |
+
h,
|
114 |
+
ar_predict_layer,
|
115 |
+
loss_fct,
|
116 |
+
ar_accuracy_metric,
|
117 |
+
top_k,
|
118 |
+
early_stop_num,
|
119 |
+
num_layers,
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
self.ar_audio_embedding = ar_audio_embedding
|
123 |
+
self.ar_audio_position = ar_audio_position
|
124 |
+
self.h = h
|
125 |
+
self.ar_predict_layer = ar_predict_layer
|
126 |
+
self.loss_fct = loss_fct
|
127 |
+
self.ar_accuracy_metric = ar_accuracy_metric
|
128 |
+
self.top_k = top_k
|
129 |
+
self.early_stop_num = early_stop_num
|
130 |
+
self.num_layers = num_layers
|
131 |
+
|
132 |
+
def forward(self, x, prompt):
|
133 |
+
y = prompt
|
134 |
+
x_example = x[:, :, 0] * 0.0
|
135 |
+
# N, 1, 512
|
136 |
+
cache = {
|
137 |
+
"all_stage": self.num_layers,
|
138 |
+
"k": None,
|
139 |
+
"v": None,
|
140 |
+
"y_emb": None,
|
141 |
+
"first_infer": 1,
|
142 |
+
"stage": 0,
|
143 |
+
}
|
144 |
+
|
145 |
+
y_emb = self.ar_audio_embedding(y)
|
146 |
+
|
147 |
+
cache["y_emb"] = y_emb
|
148 |
+
y_pos = self.ar_audio_position(y_emb)
|
149 |
+
|
150 |
+
xy_pos = torch.concat([x, y_pos], dim=1)
|
151 |
+
|
152 |
+
y_example = y_pos[:, :, 0] * 0.0
|
153 |
+
x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example).bool()
|
154 |
+
y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
|
155 |
+
y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
|
156 |
+
torch.ones_like(
|
157 |
+
y_example.transpose(0, 1),
|
158 |
+
dtype=torch.int64,
|
159 |
+
),
|
160 |
+
dim=0,
|
161 |
+
)
|
162 |
+
y_attn_mask = y_attn_mask > 0
|
163 |
+
|
164 |
+
x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
|
165 |
+
y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
|
166 |
+
x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
|
167 |
+
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
|
168 |
+
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
169 |
+
cache["k"] = (
|
170 |
+
torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))
|
171 |
+
.unsqueeze(1)
|
172 |
+
.repeat(self.num_layers, 1, 1, 1)
|
173 |
+
)
|
174 |
+
cache["v"] = (
|
175 |
+
torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))
|
176 |
+
.unsqueeze(1)
|
177 |
+
.repeat(self.num_layers, 1, 1, 1)
|
178 |
+
)
|
179 |
+
|
180 |
+
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
181 |
+
logits = self.ar_predict_layer(xy_dec[:, -1])
|
182 |
+
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
183 |
+
|
184 |
+
y = torch.concat([y, samples], dim=1)
|
185 |
+
|
186 |
+
return y, cache["k"], cache["v"], cache["y_emb"], x_example
|
187 |
+
|
188 |
+
|
189 |
+
class T2SStageDecoder(nn.Module):
|
190 |
+
def __init__(
|
191 |
+
self,
|
192 |
+
ar_audio_embedding,
|
193 |
+
ar_audio_position,
|
194 |
+
h,
|
195 |
+
ar_predict_layer,
|
196 |
+
loss_fct,
|
197 |
+
ar_accuracy_metric,
|
198 |
+
top_k,
|
199 |
+
early_stop_num,
|
200 |
+
num_layers,
|
201 |
+
):
|
202 |
+
super().__init__()
|
203 |
+
self.ar_audio_embedding = ar_audio_embedding
|
204 |
+
self.ar_audio_position = ar_audio_position
|
205 |
+
self.h = h
|
206 |
+
self.ar_predict_layer = ar_predict_layer
|
207 |
+
self.loss_fct = loss_fct
|
208 |
+
self.ar_accuracy_metric = ar_accuracy_metric
|
209 |
+
self.top_k = top_k
|
210 |
+
self.early_stop_num = early_stop_num
|
211 |
+
self.num_layers = num_layers
|
212 |
+
|
213 |
+
def forward(self, y, k, v, y_emb, x_example):
|
214 |
+
cache = {
|
215 |
+
"all_stage": self.num_layers,
|
216 |
+
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
|
217 |
+
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
|
218 |
+
"y_emb": y_emb,
|
219 |
+
"first_infer": 0,
|
220 |
+
"stage": 0,
|
221 |
+
}
|
222 |
+
|
223 |
+
y_emb = torch.cat(
|
224 |
+
[
|
225 |
+
cache["y_emb"],
|
226 |
+
self.ar_audio_embedding(y[:, -1:]),
|
227 |
+
],
|
228 |
+
1,
|
229 |
+
)
|
230 |
+
cache["y_emb"] = y_emb
|
231 |
+
y_pos = self.ar_audio_position(y_emb)
|
232 |
+
|
233 |
+
xy_pos = y_pos[:, -1:]
|
234 |
+
|
235 |
+
y_example = y_pos[:, :, 0] * 0.0
|
236 |
+
|
237 |
+
xy_attn_mask = torch.cat([x_example, y_example], dim=1)
|
238 |
+
xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
|
239 |
+
|
240 |
+
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
241 |
+
logits = self.ar_predict_layer(xy_dec[:, -1])
|
242 |
+
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
243 |
+
|
244 |
+
y = torch.concat([y, samples], dim=1)
|
245 |
+
|
246 |
+
return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
|
247 |
+
|
248 |
+
|
249 |
+
class Text2SemanticDecoder(nn.Module):
|
250 |
+
def __init__(self, config, norm_first=False, top_k=3):
|
251 |
+
super(Text2SemanticDecoder, self).__init__()
|
252 |
+
self.model_dim = config["model"]["hidden_dim"]
|
253 |
+
self.embedding_dim = config["model"]["embedding_dim"]
|
254 |
+
self.num_head = config["model"]["head"]
|
255 |
+
self.num_layers = config["model"]["n_layer"]
|
256 |
+
self.norm_first = norm_first
|
257 |
+
self.vocab_size = config["model"]["vocab_size"]
|
258 |
+
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
259 |
+
self.p_dropout = float(config["model"]["dropout"])
|
260 |
+
self.EOS = config["model"]["EOS"]
|
261 |
+
self.norm_first = norm_first
|
262 |
+
assert self.EOS == self.vocab_size - 1
|
263 |
+
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
264 |
+
self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
|
265 |
+
self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
266 |
+
self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
|
267 |
+
self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
268 |
+
self.h = TransformerEncoder(
|
269 |
+
TransformerEncoderLayer(
|
270 |
+
d_model=self.model_dim,
|
271 |
+
nhead=self.num_head,
|
272 |
+
dim_feedforward=self.model_dim * 4,
|
273 |
+
dropout=0.1,
|
274 |
+
batch_first=True,
|
275 |
+
norm_first=norm_first,
|
276 |
+
),
|
277 |
+
num_layers=self.num_layers,
|
278 |
+
norm=LayerNorm(self.model_dim) if norm_first else None,
|
279 |
+
)
|
280 |
+
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
281 |
+
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
282 |
+
self.ar_accuracy_metric = MulticlassAccuracy(
|
283 |
+
self.vocab_size,
|
284 |
+
top_k=top_k,
|
285 |
+
average="micro",
|
286 |
+
multidim_average="global",
|
287 |
+
ignore_index=self.EOS,
|
288 |
+
)
|
289 |
+
self.top_k = torch.LongTensor([1])
|
290 |
+
self.early_stop_num = torch.LongTensor([-1])
|
291 |
+
|
292 |
+
def init_onnx(self):
|
293 |
+
self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
|
294 |
+
self.first_stage_decoder = T2SFirstStageDecoder(
|
295 |
+
self.ar_audio_embedding,
|
296 |
+
self.ar_audio_position,
|
297 |
+
self.h,
|
298 |
+
self.ar_predict_layer,
|
299 |
+
self.loss_fct,
|
300 |
+
self.ar_accuracy_metric,
|
301 |
+
self.top_k,
|
302 |
+
self.early_stop_num,
|
303 |
+
self.num_layers,
|
304 |
+
)
|
305 |
+
self.stage_decoder = T2SStageDecoder(
|
306 |
+
self.ar_audio_embedding,
|
307 |
+
self.ar_audio_position,
|
308 |
+
self.h,
|
309 |
+
self.ar_predict_layer,
|
310 |
+
self.loss_fct,
|
311 |
+
self.ar_accuracy_metric,
|
312 |
+
self.top_k,
|
313 |
+
self.early_stop_num,
|
314 |
+
self.num_layers,
|
315 |
+
)
|
316 |
+
|
317 |
+
def forward(self, x, prompts, bert_feature):
|
318 |
+
early_stop_num = self.early_stop_num
|
319 |
+
prefix_len = prompts.shape[1]
|
320 |
+
|
321 |
+
x = self.onnx_encoder(x, bert_feature)
|
322 |
+
y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)
|
323 |
+
|
324 |
+
stop = False
|
325 |
+
for idx in range(1, 1500):
|
326 |
+
enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
|
327 |
+
y, k, v, y_emb, stage, logits, samples = enco
|
328 |
+
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
329 |
+
stop = True
|
330 |
+
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
331 |
+
stop = True
|
332 |
+
if stop:
|
333 |
+
break
|
334 |
+
y[0, -1] = 0
|
335 |
+
return y, idx
|
336 |
+
|
337 |
+
def infer(self, x, prompts, bert_feature):
|
338 |
+
top_k = self.top_k
|
339 |
+
early_stop_num = self.early_stop_num
|
340 |
+
|
341 |
+
x = self.onnx_encoder(x, bert_feature)
|
342 |
+
|
343 |
+
y = prompts
|
344 |
+
prefix_len = y.shape[1]
|
345 |
+
x_len = x.shape[1]
|
346 |
+
x_example = x[:, :, 0] * 0.0
|
347 |
+
x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example)
|
348 |
+
x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool)
|
349 |
+
|
350 |
+
stop = False
|
351 |
+
cache = {
|
352 |
+
"all_stage": self.num_layers,
|
353 |
+
"k": [None] * self.num_layers,
|
354 |
+
"v": [None] * self.num_layers,
|
355 |
+
"y_emb": None,
|
356 |
+
"first_infer": 1,
|
357 |
+
"stage": 0,
|
358 |
+
}
|
359 |
+
for idx in range(1500):
|
360 |
+
if cache["first_infer"] == 1:
|
361 |
+
y_emb = self.ar_audio_embedding(y)
|
362 |
+
else:
|
363 |
+
y_emb = torch.cat([cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1)
|
364 |
+
cache["y_emb"] = y_emb
|
365 |
+
y_pos = self.ar_audio_position(y_emb)
|
366 |
+
if cache["first_infer"] == 1:
|
367 |
+
xy_pos = torch.concat([x, y_pos], dim=1)
|
368 |
+
else:
|
369 |
+
xy_pos = y_pos[:, -1:]
|
370 |
+
y_len = y_pos.shape[1]
|
371 |
+
if cache["first_infer"] == 1:
|
372 |
+
x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True)
|
373 |
+
y_attn_mask = F.pad(
|
374 |
+
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
375 |
+
(x_len, 0),
|
376 |
+
value=False,
|
377 |
+
)
|
378 |
+
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
379 |
+
else:
|
380 |
+
xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool)
|
381 |
+
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
382 |
+
logits = self.ar_predict_layer(xy_dec[:, -1])
|
383 |
+
samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
384 |
+
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
385 |
+
stop = True
|
386 |
+
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
387 |
+
stop = True
|
388 |
+
if stop:
|
389 |
+
if prompts.shape[1] == y.shape[1]:
|
390 |
+
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
391 |
+
break
|
392 |
+
y = torch.concat([y, samples], dim=1)
|
393 |
+
cache["first_infer"] = 0
|
394 |
+
return y, idx
|
AR/models/utils.py
ADDED
@@ -0,0 +1,282 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/utils.py
|
2 |
+
# reference: https://github.com/lifeiteng/vall-e
|
3 |
+
from typing import Tuple
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
|
9 |
+
def sequence_mask(length, max_length=None):
|
10 |
+
if max_length is None:
|
11 |
+
max_length = length.max()
|
12 |
+
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
13 |
+
return x.unsqueeze(0) < length.unsqueeze(1)
|
14 |
+
|
15 |
+
|
16 |
+
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
17 |
+
"""
|
18 |
+
Args:
|
19 |
+
lengths:
|
20 |
+
A 1-D tensor containing sentence lengths.
|
21 |
+
max_len:
|
22 |
+
The length of masks.
|
23 |
+
Returns:
|
24 |
+
Return a 2-D bool tensor, where masked positions
|
25 |
+
are filled with `True` and non-masked positions are
|
26 |
+
filled with `False`.
|
27 |
+
|
28 |
+
#>>> lengths = torch.tensor([1, 3, 2, 5])
|
29 |
+
#>>> make_pad_mask(lengths)
|
30 |
+
tensor([[False, True, True, True, True],
|
31 |
+
[False, False, False, True, True],
|
32 |
+
[False, False, True, True, True],
|
33 |
+
[False, False, False, False, False]])
|
34 |
+
"""
|
35 |
+
assert lengths.ndim == 1, lengths.ndim
|
36 |
+
max_len = max(max_len, lengths.max())
|
37 |
+
n = lengths.size(0)
|
38 |
+
seq_range = torch.arange(0, max_len, device=lengths.device)
|
39 |
+
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
|
40 |
+
|
41 |
+
return expaned_lengths >= lengths.unsqueeze(-1)
|
42 |
+
|
43 |
+
|
44 |
+
def make_pad_mask_left(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
45 |
+
"""
|
46 |
+
Args:
|
47 |
+
lengths:
|
48 |
+
A 1-D tensor containing sentence lengths.
|
49 |
+
max_len:
|
50 |
+
The length of masks.
|
51 |
+
Returns:
|
52 |
+
Return a 2-D bool tensor, where masked positions
|
53 |
+
are filled with `True` and non-masked positions are
|
54 |
+
filled with `False`.
|
55 |
+
|
56 |
+
#>>> lengths = torch.tensor([1, 3, 2, 5])
|
57 |
+
#>>> make_pad_mask(lengths)
|
58 |
+
tensor(
|
59 |
+
[
|
60 |
+
[True, True, False],
|
61 |
+
[True, False, False],
|
62 |
+
[True, True, False],
|
63 |
+
...
|
64 |
+
]
|
65 |
+
)
|
66 |
+
"""
|
67 |
+
assert lengths.ndim == 1, lengths.ndim
|
68 |
+
max_len = max(max_len, lengths.max())
|
69 |
+
n = lengths.size(0)
|
70 |
+
seq_range = torch.arange(0, max_len, device=lengths.device)
|
71 |
+
expaned_lengths = seq_range.unsqueeze(0).repeat(n, 1)
|
72 |
+
expaned_lengths -= (max_len - lengths).unsqueeze(-1)
|
73 |
+
|
74 |
+
return expaned_lengths < 0
|
75 |
+
|
76 |
+
|
77 |
+
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
|
78 |
+
def top_k_top_p_filtering(
|
79 |
+
logits,
|
80 |
+
top_k=0,
|
81 |
+
top_p=1.0,
|
82 |
+
filter_value=-float("Inf"),
|
83 |
+
min_tokens_to_keep=1,
|
84 |
+
):
|
85 |
+
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
86 |
+
Args:
|
87 |
+
logits: logits distribution shape (batch size, vocabulary size)
|
88 |
+
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
89 |
+
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
90 |
+
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
91 |
+
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
92 |
+
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
93 |
+
"""
|
94 |
+
if top_k > 0:
|
95 |
+
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
96 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
97 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
98 |
+
logits[indices_to_remove] = filter_value
|
99 |
+
|
100 |
+
if top_p < 1.0:
|
101 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
102 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
103 |
+
|
104 |
+
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
105 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
106 |
+
if min_tokens_to_keep > 1:
|
107 |
+
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
108 |
+
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
109 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
110 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
111 |
+
sorted_indices_to_remove[..., 0] = 0
|
112 |
+
|
113 |
+
# scatter sorted tensors to original indexing
|
114 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
115 |
+
logits[indices_to_remove] = filter_value
|
116 |
+
return logits
|
117 |
+
|
118 |
+
|
119 |
+
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
|
120 |
+
# temperature: (`optional`) float
|
121 |
+
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
|
122 |
+
# top_k: (`optional`) int
|
123 |
+
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
|
124 |
+
# top_p: (`optional`) float
|
125 |
+
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
|
126 |
+
|
127 |
+
# Temperature (higher temperature => more likely to sample low probability tokens)
|
128 |
+
if temperature != 1.0:
|
129 |
+
logits = logits / temperature
|
130 |
+
# Top-p/top-k filtering
|
131 |
+
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
132 |
+
# Sample
|
133 |
+
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
134 |
+
return token
|
135 |
+
|
136 |
+
|
137 |
+
from typing import Optional
|
138 |
+
|
139 |
+
|
140 |
+
def multinomial_sample_one_no_sync(
|
141 |
+
probs_sort,
|
142 |
+
): # Does multinomial sampling without a cuda synchronization
|
143 |
+
q = torch.empty_like(probs_sort).exponential_(1)
|
144 |
+
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
145 |
+
|
146 |
+
|
147 |
+
def logits_to_probs(
|
148 |
+
logits,
|
149 |
+
previous_tokens: Optional[torch.Tensor] = None,
|
150 |
+
temperature: float = 1.0,
|
151 |
+
top_k: Optional[int] = None,
|
152 |
+
top_p: Optional[int] = None,
|
153 |
+
repetition_penalty: float = 1.0,
|
154 |
+
):
|
155 |
+
# if previous_tokens is not None:
|
156 |
+
# previous_tokens = previous_tokens.squeeze()
|
157 |
+
# print(logits.shape,previous_tokens.shape)
|
158 |
+
# pdb.set_trace()
|
159 |
+
if previous_tokens is not None and repetition_penalty != 1.0:
|
160 |
+
previous_tokens = previous_tokens.long()
|
161 |
+
score = torch.gather(logits, dim=1, index=previous_tokens)
|
162 |
+
score = torch.where(
|
163 |
+
score < 0,
|
164 |
+
score * repetition_penalty,
|
165 |
+
score / repetition_penalty,
|
166 |
+
)
|
167 |
+
logits.scatter_(dim=1, index=previous_tokens, src=score)
|
168 |
+
|
169 |
+
if top_p is not None and top_p < 1.0:
|
170 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
171 |
+
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
|
172 |
+
sorted_indices_to_remove = cum_probs > top_p
|
173 |
+
sorted_indices_to_remove[:, 0] = False # keep at least one option
|
174 |
+
indices_to_remove = sorted_indices_to_remove.scatter(
|
175 |
+
dim=1,
|
176 |
+
index=sorted_indices,
|
177 |
+
src=sorted_indices_to_remove,
|
178 |
+
)
|
179 |
+
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
180 |
+
|
181 |
+
logits = logits / max(temperature, 1e-5)
|
182 |
+
|
183 |
+
if top_k is not None:
|
184 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
185 |
+
pivot = v[:, -1].unsqueeze(-1)
|
186 |
+
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
187 |
+
|
188 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
189 |
+
return probs
|
190 |
+
|
191 |
+
|
192 |
+
def sample(
|
193 |
+
logits,
|
194 |
+
previous_tokens: Optional[torch.Tensor] = None,
|
195 |
+
**sampling_kwargs,
|
196 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
197 |
+
probs = logits_to_probs(logits=logits, previous_tokens=previous_tokens, **sampling_kwargs)
|
198 |
+
idx_next = multinomial_sample_one_no_sync(probs)
|
199 |
+
return idx_next, probs
|
200 |
+
|
201 |
+
|
202 |
+
def dpo_loss(
|
203 |
+
policy_chosen_logps: torch.FloatTensor,
|
204 |
+
policy_rejected_logps: torch.FloatTensor,
|
205 |
+
reference_chosen_logps: torch.FloatTensor,
|
206 |
+
reference_rejected_logps: torch.FloatTensor,
|
207 |
+
beta: float,
|
208 |
+
reference_free: bool = False,
|
209 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
|
210 |
+
pi_logratios = policy_chosen_logps - policy_rejected_logps
|
211 |
+
ref_logratios = reference_chosen_logps - reference_rejected_logps
|
212 |
+
|
213 |
+
if reference_free:
|
214 |
+
ref_logratios = 0
|
215 |
+
|
216 |
+
logits = pi_logratios - ref_logratios
|
217 |
+
|
218 |
+
losses = -F.logsigmoid(beta * logits)
|
219 |
+
chosen_rewards = beta * (policy_chosen_logps - reference_chosen_logps).detach()
|
220 |
+
rejected_rewards = beta * (policy_rejected_logps - reference_rejected_logps).detach()
|
221 |
+
|
222 |
+
return losses.mean(), chosen_rewards, rejected_rewards
|
223 |
+
|
224 |
+
|
225 |
+
def get_batch_logps(
|
226 |
+
logits_target: torch.FloatTensor,
|
227 |
+
logits_reject: torch.FloatTensor,
|
228 |
+
labels_target: torch.LongTensor,
|
229 |
+
labels_reject: torch.LongTensor,
|
230 |
+
average_log_prob: bool = False,
|
231 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
232 |
+
# dummy token; we'll ignore the losses on these tokens later
|
233 |
+
|
234 |
+
per_token_logps_target = torch.gather(
|
235 |
+
logits_target.log_softmax(-1), dim=2, index=labels_target.unsqueeze(2)
|
236 |
+
).squeeze(2)
|
237 |
+
per_token_logps_reject = torch.gather(
|
238 |
+
logits_reject.log_softmax(-1), dim=2, index=labels_reject.unsqueeze(2)
|
239 |
+
).squeeze(2)
|
240 |
+
|
241 |
+
return per_token_logps_target.sum(-1), per_token_logps_reject.sum(-1)
|
242 |
+
|
243 |
+
|
244 |
+
def make_reject_y(y_o, y_lens):
|
245 |
+
def repeat_P(y):
|
246 |
+
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
|
247 |
+
pre = y[: range_idx[0]]
|
248 |
+
shf = y[range_idx[1] :]
|
249 |
+
range_text = y[range_idx[0] : range_idx[1]]
|
250 |
+
new_y = torch.cat([pre, range_text, range_text, shf])
|
251 |
+
return new_y
|
252 |
+
|
253 |
+
def lost_P(y):
|
254 |
+
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
|
255 |
+
pre = y[: range_idx[0]]
|
256 |
+
shf = y[range_idx[1] :]
|
257 |
+
range_text = y[range_idx[0] : range_idx[1]]
|
258 |
+
new_y = torch.cat([pre, shf])
|
259 |
+
return new_y
|
260 |
+
|
261 |
+
bs = len(y_lens)
|
262 |
+
reject_y = []
|
263 |
+
reject_y_lens = []
|
264 |
+
for b in range(bs):
|
265 |
+
process_item_idx = torch.randint(0, 1, size=(1,))[0]
|
266 |
+
if process_item_idx == 0:
|
267 |
+
new_y = repeat_P(y_o[b])
|
268 |
+
reject_y.append(new_y)
|
269 |
+
reject_y_lens.append(len(new_y))
|
270 |
+
elif process_item_idx == 1:
|
271 |
+
new_y = lost_P(y_o[b])
|
272 |
+
reject_y.append(new_y)
|
273 |
+
reject_y_lens.append(len(new_y))
|
274 |
+
max_length = max(reject_y_lens)
|
275 |
+
for b in range(bs):
|
276 |
+
pad_length = max_length - reject_y_lens[b]
|
277 |
+
reject_y[b] = torch.cat([reject_y[b], torch.zeros(pad_length, dtype=y_o.dtype, device=y_o.device)], dim=0)
|
278 |
+
|
279 |
+
reject_y = torch.stack(reject_y, dim=0)
|
280 |
+
reject_y_lens = torch.tensor(reject_y_lens, device=y_lens.device)
|
281 |
+
|
282 |
+
return reject_y, reject_y_lens
|
AR/modules/__init__.py
ADDED
File without changes
|
AR/modules/activation.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import Tensor
|
6 |
+
from torch.nn import Linear, Module
|
7 |
+
from torch.nn import functional as F
|
8 |
+
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
9 |
+
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
10 |
+
from torch.nn.parameter import Parameter
|
11 |
+
|
12 |
+
from AR.modules.patched_mha_with_cache import multi_head_attention_forward_patched
|
13 |
+
|
14 |
+
F.multi_head_attention_forward = multi_head_attention_forward_patched
|
15 |
+
|
16 |
+
|
17 |
+
class MultiheadAttention(Module):
|
18 |
+
r"""Allows the model to jointly attend to information
|
19 |
+
from different representation subspaces as described in the paper:
|
20 |
+
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
21 |
+
|
22 |
+
Multi-Head Attention is defined as:
|
23 |
+
|
24 |
+
.. math::
|
25 |
+
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
26 |
+
|
27 |
+
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
28 |
+
|
29 |
+
``forward()`` will use a special optimized implementation if all of the following
|
30 |
+
conditions are met:
|
31 |
+
|
32 |
+
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
|
33 |
+
restriction will be loosened in the future.)
|
34 |
+
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
|
35 |
+
- training is disabled (using ``.eval()``)
|
36 |
+
- dropout is 0
|
37 |
+
- ``add_bias_kv`` is ``False``
|
38 |
+
- ``add_zero_attn`` is ``False``
|
39 |
+
- ``batch_first`` is ``True`` and the input is batched
|
40 |
+
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
|
41 |
+
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed
|
42 |
+
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
|
43 |
+
nor ``attn_mask`` is passed
|
44 |
+
|
45 |
+
If the optimized implementation is in use, a
|
46 |
+
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
|
47 |
+
``query``/``key``/``value`` to represent padding more efficiently than using a
|
48 |
+
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
|
49 |
+
will be returned, and an additional speedup proportional to the fraction of the input
|
50 |
+
that is padding can be expected.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
embed_dim: Total dimension of the model.
|
54 |
+
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
55 |
+
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
56 |
+
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
57 |
+
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
58 |
+
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
59 |
+
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
60 |
+
Default: ``False``.
|
61 |
+
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
62 |
+
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
63 |
+
batch_first: If ``True``, then the input and output tensors are provided
|
64 |
+
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
65 |
+
|
66 |
+
Examples::
|
67 |
+
|
68 |
+
>>> # xdoctest: +SKIP
|
69 |
+
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
70 |
+
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
71 |
+
|
72 |
+
"""
|
73 |
+
|
74 |
+
__constants__ = ["batch_first"]
|
75 |
+
bias_k: Optional[torch.Tensor]
|
76 |
+
bias_v: Optional[torch.Tensor]
|
77 |
+
|
78 |
+
def __init__(
|
79 |
+
self,
|
80 |
+
embed_dim,
|
81 |
+
num_heads,
|
82 |
+
dropout=0.0,
|
83 |
+
bias=True,
|
84 |
+
add_bias_kv=False,
|
85 |
+
add_zero_attn=False,
|
86 |
+
kdim=None,
|
87 |
+
vdim=None,
|
88 |
+
batch_first=False,
|
89 |
+
linear1_cls=Linear,
|
90 |
+
linear2_cls=Linear,
|
91 |
+
device=None,
|
92 |
+
dtype=None,
|
93 |
+
) -> None:
|
94 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
95 |
+
super(MultiheadAttention, self).__init__()
|
96 |
+
self.embed_dim = embed_dim
|
97 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
98 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
99 |
+
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
100 |
+
|
101 |
+
self.num_heads = num_heads
|
102 |
+
self.dropout = dropout
|
103 |
+
self.batch_first = batch_first
|
104 |
+
self.head_dim = embed_dim // num_heads
|
105 |
+
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
106 |
+
|
107 |
+
if add_bias_kv:
|
108 |
+
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
109 |
+
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
110 |
+
else:
|
111 |
+
self.bias_k = self.bias_v = None
|
112 |
+
|
113 |
+
if linear1_cls == Linear:
|
114 |
+
if not self._qkv_same_embed_dim:
|
115 |
+
self.q_proj_weight = Parameter(
|
116 |
+
torch.empty((embed_dim, embed_dim), **factory_kwargs),
|
117 |
+
)
|
118 |
+
self.k_proj_weight = Parameter(
|
119 |
+
torch.empty((embed_dim, self.kdim), **factory_kwargs),
|
120 |
+
)
|
121 |
+
self.v_proj_weight = Parameter(
|
122 |
+
torch.empty((embed_dim, self.vdim), **factory_kwargs),
|
123 |
+
)
|
124 |
+
self.register_parameter("in_proj_weight", None)
|
125 |
+
else:
|
126 |
+
self.in_proj_weight = Parameter(
|
127 |
+
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs),
|
128 |
+
)
|
129 |
+
self.register_parameter("q_proj_weight", None)
|
130 |
+
self.register_parameter("k_proj_weight", None)
|
131 |
+
self.register_parameter("v_proj_weight", None)
|
132 |
+
|
133 |
+
if bias:
|
134 |
+
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
|
135 |
+
else:
|
136 |
+
self.register_parameter("in_proj_bias", None)
|
137 |
+
self.out_proj = NonDynamicallyQuantizableLinear(
|
138 |
+
embed_dim,
|
139 |
+
embed_dim,
|
140 |
+
bias=bias,
|
141 |
+
**factory_kwargs,
|
142 |
+
)
|
143 |
+
|
144 |
+
self._reset_parameters()
|
145 |
+
else:
|
146 |
+
if not self._qkv_same_embed_dim:
|
147 |
+
raise NotImplementedError
|
148 |
+
else:
|
149 |
+
self.in_proj_linear = linear1_cls(
|
150 |
+
embed_dim,
|
151 |
+
3 * embed_dim,
|
152 |
+
bias=bias,
|
153 |
+
**factory_kwargs,
|
154 |
+
)
|
155 |
+
self.in_proj_weight = self.in_proj_linear.weight
|
156 |
+
|
157 |
+
self.register_parameter("q_proj_weight", None)
|
158 |
+
self.register_parameter("k_proj_weight", None)
|
159 |
+
self.register_parameter("v_proj_weight", None)
|
160 |
+
|
161 |
+
if bias:
|
162 |
+
self.in_proj_bias = self.in_proj_linear.bias
|
163 |
+
else:
|
164 |
+
self.register_parameter("in_proj_bias", None)
|
165 |
+
|
166 |
+
self.out_proj = linear2_cls(
|
167 |
+
embed_dim,
|
168 |
+
embed_dim,
|
169 |
+
bias=bias,
|
170 |
+
**factory_kwargs,
|
171 |
+
)
|
172 |
+
|
173 |
+
if self.bias_k is not None:
|
174 |
+
xavier_normal_(self.bias_k)
|
175 |
+
if self.bias_v is not None:
|
176 |
+
xavier_normal_(self.bias_v)
|
177 |
+
|
178 |
+
self.add_zero_attn = add_zero_attn
|
179 |
+
|
180 |
+
def _reset_parameters(self):
|
181 |
+
if self._qkv_same_embed_dim:
|
182 |
+
xavier_uniform_(self.in_proj_weight)
|
183 |
+
else:
|
184 |
+
xavier_uniform_(self.q_proj_weight)
|
185 |
+
xavier_uniform_(self.k_proj_weight)
|
186 |
+
xavier_uniform_(self.v_proj_weight)
|
187 |
+
|
188 |
+
if self.in_proj_bias is not None:
|
189 |
+
constant_(self.in_proj_bias, 0.0)
|
190 |
+
constant_(self.out_proj.bias, 0.0)
|
191 |
+
|
192 |
+
if self.bias_k is not None:
|
193 |
+
xavier_normal_(self.bias_k)
|
194 |
+
if self.bias_v is not None:
|
195 |
+
xavier_normal_(self.bias_v)
|
196 |
+
|
197 |
+
def __setstate__(self, state):
|
198 |
+
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
199 |
+
if "_qkv_same_embed_dim" not in state:
|
200 |
+
state["_qkv_same_embed_dim"] = True
|
201 |
+
|
202 |
+
super(MultiheadAttention, self).__setstate__(state)
|
203 |
+
|
204 |
+
def forward(
|
205 |
+
self,
|
206 |
+
query: Tensor,
|
207 |
+
key: Tensor,
|
208 |
+
value: Tensor,
|
209 |
+
key_padding_mask: Optional[Tensor] = None,
|
210 |
+
need_weights: bool = True,
|
211 |
+
attn_mask: Optional[Tensor] = None,
|
212 |
+
average_attn_weights: bool = True,
|
213 |
+
cache=None,
|
214 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
215 |
+
r"""
|
216 |
+
Args:
|
217 |
+
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
|
218 |
+
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
|
219 |
+
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
|
220 |
+
Queries are compared against key-value pairs to produce the output.
|
221 |
+
See "Attention Is All You Need" for more details.
|
222 |
+
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
|
223 |
+
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
|
224 |
+
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
|
225 |
+
See "Attention Is All You Need" for more details.
|
226 |
+
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
|
227 |
+
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
|
228 |
+
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
|
229 |
+
See "Attention Is All You Need" for more details.
|
230 |
+
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
231 |
+
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
|
232 |
+
Binary and byte masks are supported.
|
233 |
+
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
234 |
+
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
|
235 |
+
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
236 |
+
Default: ``True``.
|
237 |
+
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
238 |
+
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
239 |
+
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
240 |
+
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
241 |
+
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
242 |
+
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
|
243 |
+
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
244 |
+
the attention weight.
|
245 |
+
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
246 |
+
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
247 |
+
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
|
248 |
+
|
249 |
+
Outputs:
|
250 |
+
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
|
251 |
+
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
|
252 |
+
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
|
253 |
+
embedding dimension ``embed_dim``.
|
254 |
+
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
|
255 |
+
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
256 |
+
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
257 |
+
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
258 |
+
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
|
259 |
+
|
260 |
+
.. note::
|
261 |
+
`batch_first` argument is ignored for unbatched inputs.
|
262 |
+
"""
|
263 |
+
is_batched = query.dim() == 3
|
264 |
+
if key_padding_mask is not None:
|
265 |
+
_kpm_dtype = key_padding_mask.dtype
|
266 |
+
if _kpm_dtype != torch.bool and not torch.is_floating_point(
|
267 |
+
key_padding_mask,
|
268 |
+
):
|
269 |
+
raise AssertionError("only bool and floating types of key_padding_mask are supported")
|
270 |
+
why_not_fast_path = ""
|
271 |
+
if not is_batched:
|
272 |
+
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
273 |
+
elif query is not key or key is not value:
|
274 |
+
# When lifting this restriction, don't forget to either
|
275 |
+
# enforce that the dtypes all match or test cases where
|
276 |
+
# they don't!
|
277 |
+
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
278 |
+
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
279 |
+
why_not_fast_path = (
|
280 |
+
f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
281 |
+
)
|
282 |
+
elif self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype:
|
283 |
+
# this case will fail anyway, but at least they'll get a useful error message.
|
284 |
+
why_not_fast_path = (
|
285 |
+
f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
286 |
+
)
|
287 |
+
elif self.training:
|
288 |
+
why_not_fast_path = "training is enabled"
|
289 |
+
elif not self.batch_first:
|
290 |
+
why_not_fast_path = "batch_first was not True"
|
291 |
+
elif self.bias_k is not None:
|
292 |
+
why_not_fast_path = "self.bias_k was not None"
|
293 |
+
elif self.bias_v is not None:
|
294 |
+
why_not_fast_path = "self.bias_v was not None"
|
295 |
+
elif self.dropout:
|
296 |
+
why_not_fast_path = f"dropout was {self.dropout}, required zero"
|
297 |
+
elif self.add_zero_attn:
|
298 |
+
why_not_fast_path = "add_zero_attn was enabled"
|
299 |
+
elif not self._qkv_same_embed_dim:
|
300 |
+
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
301 |
+
elif attn_mask is not None:
|
302 |
+
why_not_fast_path = "attn_mask was not None"
|
303 |
+
elif query.is_nested and key_padding_mask is not None:
|
304 |
+
why_not_fast_path = "key_padding_mask is not supported with NestedTensor input"
|
305 |
+
elif self.num_heads % 2 == 1:
|
306 |
+
why_not_fast_path = "num_heads is odd"
|
307 |
+
elif torch.is_autocast_enabled():
|
308 |
+
why_not_fast_path = "autocast is enabled"
|
309 |
+
|
310 |
+
if not why_not_fast_path:
|
311 |
+
tensor_args = (
|
312 |
+
query,
|
313 |
+
key,
|
314 |
+
value,
|
315 |
+
self.in_proj_weight,
|
316 |
+
self.in_proj_bias,
|
317 |
+
self.out_proj.weight,
|
318 |
+
self.out_proj.bias,
|
319 |
+
)
|
320 |
+
# We have to use list comprehensions below because TorchScript does not support
|
321 |
+
# generator expressions.
|
322 |
+
if torch.overrides.has_torch_function(tensor_args):
|
323 |
+
why_not_fast_path = "some Tensor argument has_torch_function"
|
324 |
+
elif not all([(x is None or x.is_cuda or "cpu" in str(x.device)) for x in tensor_args]):
|
325 |
+
why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
|
326 |
+
elif torch.is_grad_enabled() and any([x is not None and x.requires_grad for x in tensor_args]):
|
327 |
+
why_not_fast_path = "grad is enabled and at least one of query or the input/output projection weights or biases requires_grad"
|
328 |
+
if not why_not_fast_path:
|
329 |
+
return torch._native_multi_head_attention(
|
330 |
+
query,
|
331 |
+
key,
|
332 |
+
value,
|
333 |
+
self.embed_dim,
|
334 |
+
self.num_heads,
|
335 |
+
self.in_proj_weight,
|
336 |
+
self.in_proj_bias,
|
337 |
+
self.out_proj.weight,
|
338 |
+
self.out_proj.bias,
|
339 |
+
key_padding_mask if key_padding_mask is not None else attn_mask,
|
340 |
+
need_weights,
|
341 |
+
average_attn_weights,
|
342 |
+
1 if key_padding_mask is not None else 0 if attn_mask is not None else None,
|
343 |
+
)
|
344 |
+
|
345 |
+
any_nested = query.is_nested or key.is_nested or value.is_nested
|
346 |
+
assert not any_nested, (
|
347 |
+
"MultiheadAttention does not support NestedTensor outside of its fast path. "
|
348 |
+
+ f"The fast path was not hit because {why_not_fast_path}"
|
349 |
+
)
|
350 |
+
|
351 |
+
if self.batch_first and is_batched:
|
352 |
+
# make sure that the transpose op does not affect the "is" property
|
353 |
+
if key is value:
|
354 |
+
if query is key:
|
355 |
+
query = key = value = query.transpose(1, 0)
|
356 |
+
else:
|
357 |
+
query, key = [x.transpose(1, 0) for x in (query, key)]
|
358 |
+
value = key
|
359 |
+
else:
|
360 |
+
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
|
361 |
+
|
362 |
+
if not self._qkv_same_embed_dim:
|
363 |
+
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
364 |
+
query,
|
365 |
+
key,
|
366 |
+
value,
|
367 |
+
self.embed_dim,
|
368 |
+
self.num_heads,
|
369 |
+
self.in_proj_weight,
|
370 |
+
self.in_proj_bias,
|
371 |
+
self.bias_k,
|
372 |
+
self.bias_v,
|
373 |
+
self.add_zero_attn,
|
374 |
+
self.dropout,
|
375 |
+
self.out_proj.weight,
|
376 |
+
self.out_proj.bias,
|
377 |
+
training=self.training,
|
378 |
+
key_padding_mask=key_padding_mask,
|
379 |
+
need_weights=need_weights,
|
380 |
+
attn_mask=attn_mask,
|
381 |
+
use_separate_proj_weight=True,
|
382 |
+
q_proj_weight=self.q_proj_weight,
|
383 |
+
k_proj_weight=self.k_proj_weight,
|
384 |
+
v_proj_weight=self.v_proj_weight,
|
385 |
+
average_attn_weights=average_attn_weights,
|
386 |
+
cache=cache,
|
387 |
+
)
|
388 |
+
else:
|
389 |
+
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
390 |
+
query,
|
391 |
+
key,
|
392 |
+
value,
|
393 |
+
self.embed_dim,
|
394 |
+
self.num_heads,
|
395 |
+
self.in_proj_weight,
|
396 |
+
self.in_proj_bias,
|
397 |
+
self.bias_k,
|
398 |
+
self.bias_v,
|
399 |
+
self.add_zero_attn,
|
400 |
+
self.dropout,
|
401 |
+
self.out_proj.weight,
|
402 |
+
self.out_proj.bias,
|
403 |
+
training=self.training,
|
404 |
+
key_padding_mask=key_padding_mask,
|
405 |
+
need_weights=need_weights,
|
406 |
+
attn_mask=attn_mask,
|
407 |
+
average_attn_weights=average_attn_weights,
|
408 |
+
cache=cache,
|
409 |
+
)
|
410 |
+
if self.batch_first and is_batched:
|
411 |
+
return attn_output.transpose(1, 0), attn_output_weights
|
412 |
+
else:
|
413 |
+
return attn_output, attn_output_weights
|
AR/modules/activation_onnx.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import Tensor
|
6 |
+
from torch.nn import Linear, Module
|
7 |
+
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
8 |
+
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
9 |
+
from torch.nn.parameter import Parameter
|
10 |
+
|
11 |
+
from AR.modules.patched_mha_with_cache_onnx import multi_head_attention_forward_patched
|
12 |
+
|
13 |
+
|
14 |
+
class MultiheadAttention(Module):
|
15 |
+
__constants__ = ["batch_first"]
|
16 |
+
bias_k: Optional[torch.Tensor]
|
17 |
+
bias_v: Optional[torch.Tensor]
|
18 |
+
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
embed_dim,
|
22 |
+
num_heads,
|
23 |
+
dropout=0.0,
|
24 |
+
bias=True,
|
25 |
+
add_bias_kv=False,
|
26 |
+
add_zero_attn=False,
|
27 |
+
kdim=None,
|
28 |
+
vdim=None,
|
29 |
+
batch_first=False,
|
30 |
+
linear1_cls=Linear,
|
31 |
+
linear2_cls=Linear,
|
32 |
+
device=None,
|
33 |
+
dtype=None,
|
34 |
+
) -> None:
|
35 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
36 |
+
super(MultiheadAttention, self).__init__()
|
37 |
+
self.embed_dim = embed_dim
|
38 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
39 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
40 |
+
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
41 |
+
|
42 |
+
self.num_heads = num_heads
|
43 |
+
self.dropout = dropout
|
44 |
+
self.batch_first = batch_first
|
45 |
+
self.head_dim = embed_dim // num_heads
|
46 |
+
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
47 |
+
|
48 |
+
if add_bias_kv:
|
49 |
+
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
50 |
+
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
51 |
+
else:
|
52 |
+
self.bias_k = self.bias_v = None
|
53 |
+
|
54 |
+
if linear1_cls == Linear:
|
55 |
+
if not self._qkv_same_embed_dim:
|
56 |
+
self.q_proj_weight = Parameter(
|
57 |
+
torch.empty(
|
58 |
+
(embed_dim, embed_dim),
|
59 |
+
**factory_kwargs,
|
60 |
+
)
|
61 |
+
)
|
62 |
+
self.k_proj_weight = Parameter(
|
63 |
+
torch.empty(
|
64 |
+
(embed_dim, self.kdim),
|
65 |
+
**factory_kwargs,
|
66 |
+
)
|
67 |
+
)
|
68 |
+
self.v_proj_weight = Parameter(
|
69 |
+
torch.empty(
|
70 |
+
(embed_dim, self.vdim),
|
71 |
+
**factory_kwargs,
|
72 |
+
)
|
73 |
+
)
|
74 |
+
self.register_parameter("in_proj_weight", None)
|
75 |
+
else:
|
76 |
+
self.in_proj_weight = Parameter(
|
77 |
+
torch.empty(
|
78 |
+
(3 * embed_dim, embed_dim),
|
79 |
+
**factory_kwargs,
|
80 |
+
)
|
81 |
+
)
|
82 |
+
self.register_parameter("q_proj_weight", None)
|
83 |
+
self.register_parameter("k_proj_weight", None)
|
84 |
+
self.register_parameter("v_proj_weight", None)
|
85 |
+
|
86 |
+
if bias:
|
87 |
+
self.in_proj_bias = Parameter(
|
88 |
+
torch.empty(3 * embed_dim, **factory_kwargs),
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
self.register_parameter("in_proj_bias", None)
|
92 |
+
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
|
93 |
+
|
94 |
+
self._reset_parameters()
|
95 |
+
else:
|
96 |
+
if not self._qkv_same_embed_dim:
|
97 |
+
raise NotImplementedError
|
98 |
+
else:
|
99 |
+
self.in_proj_linear = linear1_cls(
|
100 |
+
embed_dim,
|
101 |
+
3 * embed_dim,
|
102 |
+
bias=bias,
|
103 |
+
**factory_kwargs,
|
104 |
+
)
|
105 |
+
self.in_proj_weight = self.in_proj_linear.weight
|
106 |
+
|
107 |
+
self.register_parameter("q_proj_weight", None)
|
108 |
+
self.register_parameter("k_proj_weight", None)
|
109 |
+
self.register_parameter("v_proj_weight", None)
|
110 |
+
|
111 |
+
if bias:
|
112 |
+
self.in_proj_bias = self.in_proj_linear.bias
|
113 |
+
else:
|
114 |
+
self.register_parameter("in_proj_bias", None)
|
115 |
+
|
116 |
+
self.out_proj = linear2_cls(
|
117 |
+
embed_dim,
|
118 |
+
embed_dim,
|
119 |
+
bias=bias,
|
120 |
+
**factory_kwargs,
|
121 |
+
)
|
122 |
+
|
123 |
+
if self.bias_k is not None:
|
124 |
+
xavier_normal_(self.bias_k)
|
125 |
+
if self.bias_v is not None:
|
126 |
+
xavier_normal_(self.bias_v)
|
127 |
+
|
128 |
+
self.add_zero_attn = add_zero_attn
|
129 |
+
|
130 |
+
def _reset_parameters(self):
|
131 |
+
if self._qkv_same_embed_dim:
|
132 |
+
xavier_uniform_(self.in_proj_weight)
|
133 |
+
else:
|
134 |
+
xavier_uniform_(self.q_proj_weight)
|
135 |
+
xavier_uniform_(self.k_proj_weight)
|
136 |
+
xavier_uniform_(self.v_proj_weight)
|
137 |
+
|
138 |
+
if self.in_proj_bias is not None:
|
139 |
+
constant_(self.in_proj_bias, 0.0)
|
140 |
+
constant_(self.out_proj.bias, 0.0)
|
141 |
+
|
142 |
+
if self.bias_k is not None:
|
143 |
+
xavier_normal_(self.bias_k)
|
144 |
+
if self.bias_v is not None:
|
145 |
+
xavier_normal_(self.bias_v)
|
146 |
+
|
147 |
+
def __setstate__(self, state):
|
148 |
+
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
149 |
+
if "_qkv_same_embed_dim" not in state:
|
150 |
+
state["_qkv_same_embed_dim"] = True
|
151 |
+
|
152 |
+
super(MultiheadAttention, self).__setstate__(state)
|
153 |
+
|
154 |
+
def forward(
|
155 |
+
self,
|
156 |
+
query: Tensor,
|
157 |
+
key: Tensor,
|
158 |
+
value: Tensor,
|
159 |
+
key_padding_mask: Optional[Tensor] = None,
|
160 |
+
need_weights: bool = True,
|
161 |
+
attn_mask: Optional[Tensor] = None,
|
162 |
+
average_attn_weights: bool = True,
|
163 |
+
cache=None,
|
164 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
165 |
+
any_nested = query.is_nested or key.is_nested or value.is_nested
|
166 |
+
query = key = value = query.transpose(1, 0)
|
167 |
+
attn_output = multi_head_attention_forward_patched(
|
168 |
+
query,
|
169 |
+
key,
|
170 |
+
value,
|
171 |
+
self.embed_dim,
|
172 |
+
self.num_heads,
|
173 |
+
self.in_proj_weight,
|
174 |
+
self.in_proj_bias,
|
175 |
+
self.bias_k,
|
176 |
+
self.bias_v,
|
177 |
+
self.add_zero_attn,
|
178 |
+
self.dropout,
|
179 |
+
self.out_proj.weight,
|
180 |
+
self.out_proj.bias,
|
181 |
+
training=self.training,
|
182 |
+
key_padding_mask=key_padding_mask,
|
183 |
+
need_weights=need_weights,
|
184 |
+
attn_mask=attn_mask,
|
185 |
+
average_attn_weights=average_attn_weights,
|
186 |
+
cache=cache,
|
187 |
+
)
|
188 |
+
return attn_output.transpose(1, 0)
|
AR/modules/embedding.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
|
8 |
+
class TokenEmbedding(nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
embedding_dim: int,
|
12 |
+
vocab_size: int,
|
13 |
+
dropout: float = 0.0,
|
14 |
+
):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
self.vocab_size = vocab_size
|
18 |
+
self.embedding_dim = embedding_dim
|
19 |
+
|
20 |
+
self.dropout = torch.nn.Dropout(p=dropout)
|
21 |
+
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
22 |
+
|
23 |
+
@property
|
24 |
+
def weight(self) -> torch.Tensor:
|
25 |
+
return self.word_embeddings.weight
|
26 |
+
|
27 |
+
def embedding(self, index: int) -> torch.Tensor:
|
28 |
+
return self.word_embeddings.weight[index : index + 1]
|
29 |
+
|
30 |
+
def forward(self, x: torch.Tensor):
|
31 |
+
x = self.word_embeddings(x)
|
32 |
+
x = self.dropout(x)
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class SinePositionalEmbedding(nn.Module):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
embedding_dim: int,
|
40 |
+
dropout: float = 0.0,
|
41 |
+
scale: bool = False,
|
42 |
+
alpha: bool = False,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.embedding_dim = embedding_dim
|
46 |
+
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
47 |
+
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
48 |
+
self.dropout = torch.nn.Dropout(p=dropout)
|
49 |
+
|
50 |
+
self.reverse = False
|
51 |
+
self.pe = None
|
52 |
+
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
|
53 |
+
|
54 |
+
def extend_pe(self, x):
|
55 |
+
"""Reset the positional encodings."""
|
56 |
+
if self.pe is not None:
|
57 |
+
if self.pe.size(1) >= x.size(1):
|
58 |
+
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
59 |
+
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
60 |
+
return
|
61 |
+
pe = torch.zeros(x.size(1), self.embedding_dim)
|
62 |
+
if self.reverse:
|
63 |
+
position = torch.arange(x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
|
64 |
+
else:
|
65 |
+
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
66 |
+
div_term = torch.exp(
|
67 |
+
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) * -(math.log(10000.0) / self.embedding_dim)
|
68 |
+
)
|
69 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
70 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
71 |
+
pe = pe.unsqueeze(0)
|
72 |
+
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
|
73 |
+
|
74 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
75 |
+
self.extend_pe(x)
|
76 |
+
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
77 |
+
output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
|
78 |
+
return self.dropout(output)
|
AR/modules/embedding_onnx.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
|
8 |
+
class TokenEmbedding(nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
embedding_dim: int,
|
12 |
+
vocab_size: int,
|
13 |
+
dropout: float = 0.0,
|
14 |
+
):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
self.vocab_size = vocab_size
|
18 |
+
self.embedding_dim = embedding_dim
|
19 |
+
|
20 |
+
self.dropout = torch.nn.Dropout(p=dropout)
|
21 |
+
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
22 |
+
|
23 |
+
@property
|
24 |
+
def weight(self) -> torch.Tensor:
|
25 |
+
return self.word_embeddings.weight
|
26 |
+
|
27 |
+
def embedding(self, index: int) -> torch.Tensor:
|
28 |
+
return self.word_embeddings.weight[index : index + 1]
|
29 |
+
|
30 |
+
def forward(self, x: torch.Tensor):
|
31 |
+
x = self.word_embeddings(x)
|
32 |
+
x = self.dropout(x)
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class SinePositionalEmbedding(nn.Module):
|
37 |
+
def __init__(
|
38 |
+
self,
|
39 |
+
embedding_dim: int,
|
40 |
+
dropout: float = 0.0,
|
41 |
+
scale: bool = False,
|
42 |
+
alpha: bool = False,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
self.embedding_dim = embedding_dim
|
46 |
+
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
47 |
+
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
48 |
+
self.dropout = torch.nn.Dropout(p=dropout)
|
49 |
+
self.reverse = False
|
50 |
+
self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
|
51 |
+
|
52 |
+
def extend_pe(self, x):
|
53 |
+
position = torch.cumsum(torch.ones_like(x[:, :, 0]), dim=1).transpose(0, 1)
|
54 |
+
scpe = (position * self.div_term).unsqueeze(0)
|
55 |
+
pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
|
56 |
+
pe = pe.contiguous().view(1, -1, self.embedding_dim)
|
57 |
+
return pe
|
58 |
+
|
59 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
60 |
+
pe = self.extend_pe(x)
|
61 |
+
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
62 |
+
output = output * self.x_scale + self.alpha * pe
|
63 |
+
return self.dropout(output)
|
AR/modules/lr_schedulers.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/modules/lr_schedulers.py
|
2 |
+
# reference: https://github.com/lifeiteng/vall-e
|
3 |
+
import math
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from matplotlib import pyplot as plt
|
7 |
+
from torch import nn
|
8 |
+
from torch.optim import Adam
|
9 |
+
|
10 |
+
|
11 |
+
class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
|
12 |
+
"""
|
13 |
+
Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
optimizer,
|
19 |
+
init_lr,
|
20 |
+
peak_lr,
|
21 |
+
end_lr,
|
22 |
+
warmup_steps=10000,
|
23 |
+
total_steps=400000,
|
24 |
+
current_step=0,
|
25 |
+
):
|
26 |
+
self.init_lr = init_lr
|
27 |
+
self.peak_lr = peak_lr
|
28 |
+
self.end_lr = end_lr
|
29 |
+
self.optimizer = optimizer
|
30 |
+
self._warmup_rate = (peak_lr - init_lr) / warmup_steps
|
31 |
+
self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
|
32 |
+
self._current_step = current_step
|
33 |
+
self.lr = init_lr
|
34 |
+
self.warmup_steps = warmup_steps
|
35 |
+
self.total_steps = total_steps
|
36 |
+
self._last_lr = [self.lr]
|
37 |
+
|
38 |
+
def set_lr(self, lr):
|
39 |
+
self._last_lr = [g["lr"] for g in self.optimizer.param_groups]
|
40 |
+
for g in self.optimizer.param_groups:
|
41 |
+
# g['lr'] = lr
|
42 |
+
g["lr"] = self.end_lr ###锁定用线性
|
43 |
+
|
44 |
+
def step(self):
|
45 |
+
if self._current_step < self.warmup_steps:
|
46 |
+
lr = self.init_lr + self._warmup_rate * self._current_step
|
47 |
+
|
48 |
+
elif self._current_step > self.total_steps:
|
49 |
+
lr = self.end_lr
|
50 |
+
|
51 |
+
else:
|
52 |
+
decay_ratio = (self._current_step - self.warmup_steps) / (self.total_steps - self.warmup_steps)
|
53 |
+
if decay_ratio < 0.0 or decay_ratio > 1.0:
|
54 |
+
raise RuntimeError("Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings.")
|
55 |
+
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
56 |
+
lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
|
57 |
+
|
58 |
+
self.lr = lr = self.end_lr = 0.002 ###锁定用线性###不听话,直接锁定!
|
59 |
+
self.set_lr(lr)
|
60 |
+
self.lr = lr
|
61 |
+
self._current_step += 1
|
62 |
+
return self.lr
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
m = nn.Linear(10, 10)
|
67 |
+
opt = Adam(m.parameters(), lr=1e-4)
|
68 |
+
s = WarmupCosineLRSchedule(
|
69 |
+
opt,
|
70 |
+
1e-6,
|
71 |
+
2e-4,
|
72 |
+
1e-6,
|
73 |
+
warmup_steps=2000,
|
74 |
+
total_steps=20000,
|
75 |
+
current_step=0,
|
76 |
+
)
|
77 |
+
lrs = []
|
78 |
+
for i in range(25000):
|
79 |
+
s.step()
|
80 |
+
lrs.append(s.lr)
|
81 |
+
print(s.lr)
|
82 |
+
|
83 |
+
plt.plot(lrs)
|
84 |
+
plt.plot(range(0, 25000), lrs)
|
85 |
+
plt.show()
|
AR/modules/optim.py
ADDED
@@ -0,0 +1,593 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
2 |
+
#
|
3 |
+
# See ../LICENSE for clarification regarding multiple authors
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
import contextlib
|
17 |
+
import logging
|
18 |
+
from collections import defaultdict
|
19 |
+
from typing import List, Tuple
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from torch import Tensor
|
23 |
+
from torch.optim import Optimizer
|
24 |
+
|
25 |
+
|
26 |
+
class BatchedOptimizer(Optimizer):
|
27 |
+
"""
|
28 |
+
This class adds to class Optimizer the capability to optimize parameters in batches:
|
29 |
+
it will stack the parameters and their grads for you so the optimizer can work
|
30 |
+
on tensors with an extra leading dimension. This is intended for speed with GPUs,
|
31 |
+
as it reduces the number of kernels launched in the optimizer.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
params:
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self, params, defaults):
|
38 |
+
super(BatchedOptimizer, self).__init__(params, defaults)
|
39 |
+
|
40 |
+
@contextlib.contextmanager
|
41 |
+
def batched_params(self, param_group, group_params_names):
|
42 |
+
"""
|
43 |
+
This function returns (technically, yields) a list of
|
44 |
+
of tuples (p, state), where
|
45 |
+
p is a `fake` parameter that is stacked (over axis 0) from real parameters
|
46 |
+
that share the same shape, and its gradient is also stacked;
|
47 |
+
`state` is the state corresponding to this batch of parameters
|
48 |
+
(it will be physically located in the "state" for one of the real
|
49 |
+
parameters, the last one that has any particular shape and dtype).
|
50 |
+
|
51 |
+
This function is decorated as a context manager so that it can
|
52 |
+
write parameters back to their "real" locations.
|
53 |
+
|
54 |
+
The idea is, instead of doing:
|
55 |
+
<code>
|
56 |
+
for p in group["params"]:
|
57 |
+
state = self.state[p]
|
58 |
+
...
|
59 |
+
</code>
|
60 |
+
you can do:
|
61 |
+
<code>
|
62 |
+
with self.batched_params(group["params"]) as batches:
|
63 |
+
for p, state, p_names in batches:
|
64 |
+
...
|
65 |
+
</code>
|
66 |
+
|
67 |
+
Args:
|
68 |
+
group: a parameter group, which is a list of parameters; should be
|
69 |
+
one of self.param_groups.
|
70 |
+
group_params_names: name for each parameter in group,
|
71 |
+
which is List[str].
|
72 |
+
"""
|
73 |
+
batches = defaultdict(list) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
|
74 |
+
batches_names = defaultdict(list) # `batches` maps from tuple (dtype_as_str,*shape) to list of str
|
75 |
+
|
76 |
+
assert len(param_group) == len(group_params_names)
|
77 |
+
for p, named_p in zip(param_group, group_params_names):
|
78 |
+
key = (str(p.dtype), *p.shape)
|
79 |
+
batches[key].append(p)
|
80 |
+
batches_names[key].append(named_p)
|
81 |
+
|
82 |
+
batches_names_keys = list(batches_names.keys())
|
83 |
+
sorted_idx = sorted(range(len(batches_names)), key=lambda i: batches_names_keys[i])
|
84 |
+
batches_names = [batches_names[batches_names_keys[idx]] for idx in sorted_idx]
|
85 |
+
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
|
86 |
+
|
87 |
+
stacked_params_dict = dict()
|
88 |
+
|
89 |
+
# turn batches into a list, in deterministic order.
|
90 |
+
# tuples will contain tuples of (stacked_param, state, stacked_params_names),
|
91 |
+
# one for each batch in `batches`.
|
92 |
+
tuples = []
|
93 |
+
|
94 |
+
for batch, batch_names in zip(batches, batches_names):
|
95 |
+
p = batch[0]
|
96 |
+
# we arbitrarily store the state in the
|
97 |
+
# state corresponding to the 1st parameter in the
|
98 |
+
# group. class Optimizer will take care of saving/loading state.
|
99 |
+
state = self.state[p]
|
100 |
+
p_stacked = torch.stack(batch)
|
101 |
+
grad = torch.stack([torch.zeros_like(p) if p.grad is None else p.grad for p in batch])
|
102 |
+
p_stacked.grad = grad
|
103 |
+
stacked_params_dict[key] = p_stacked
|
104 |
+
tuples.append((p_stacked, state, batch_names))
|
105 |
+
|
106 |
+
yield tuples # <-- calling code will do the actual optimization here!
|
107 |
+
|
108 |
+
for (stacked_params, _state, _names), batch in zip(tuples, batches):
|
109 |
+
for i, p in enumerate(batch): # batch is list of Parameter
|
110 |
+
p.copy_(stacked_params[i])
|
111 |
+
|
112 |
+
|
113 |
+
class ScaledAdam(BatchedOptimizer):
|
114 |
+
"""
|
115 |
+
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
|
116 |
+
proportional to the norm of that parameter; and also learn the scale of the parameter,
|
117 |
+
in log space, subject to upper and lower limits (as if we had factored each parameter as
|
118 |
+
param = underlying_param * log_scale.exp())
|
119 |
+
|
120 |
+
|
121 |
+
Args:
|
122 |
+
params: The parameters or param_groups to optimize (like other Optimizer subclasses)
|
123 |
+
lr: The learning rate. We will typically use a learning rate schedule that starts
|
124 |
+
at 0.03 and decreases over time, i.e. much higher than other common
|
125 |
+
optimizers.
|
126 |
+
clipping_scale: (e.g. 2.0)
|
127 |
+
A scale for gradient-clipping: if specified, the normalized gradients
|
128 |
+
over the whole model will be clipped to have 2-norm equal to
|
129 |
+
`clipping_scale` times the median 2-norm over the most recent period
|
130 |
+
of `clipping_update_period` minibatches. By "normalized gradients",
|
131 |
+
we mean after multiplying by the rms parameter value for this tensor
|
132 |
+
[for non-scalars]; this is appropriate because our update is scaled
|
133 |
+
by this quantity.
|
134 |
+
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
|
135 |
+
Must satisfy 0 < beta <= beta2 < 1.
|
136 |
+
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
|
137 |
+
scale of each parameter tensor and scalar parameters of the mode..
|
138 |
+
If each parameter were decomposed
|
139 |
+
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
|
140 |
+
would be a the scaling factor on the learning rate of p_scale.
|
141 |
+
eps: A general-purpose epsilon to prevent division by zero
|
142 |
+
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
|
143 |
+
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
144 |
+
parameter tensor to be >= this value)
|
145 |
+
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
|
146 |
+
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
147 |
+
parameter tensor to be <= this value)
|
148 |
+
scalar_max: Maximum absolute value for scalar parameters (applicable if your
|
149 |
+
model has any parameters with numel() == 1).
|
150 |
+
size_update_period: The periodicity, in steps, with which we update the size (scale)
|
151 |
+
of the parameter tensor. This is provided to save a little time
|
152 |
+
in the update.
|
153 |
+
clipping_update_period: if clipping_scale is specified, this is the period
|
154 |
+
"""
|
155 |
+
|
156 |
+
def __init__(
|
157 |
+
self,
|
158 |
+
params,
|
159 |
+
lr=3e-02,
|
160 |
+
clipping_scale=None,
|
161 |
+
betas=(0.9, 0.98),
|
162 |
+
scalar_lr_scale=0.1,
|
163 |
+
eps=1.0e-08,
|
164 |
+
param_min_rms=1.0e-05,
|
165 |
+
param_max_rms=3.0,
|
166 |
+
scalar_max=10.0,
|
167 |
+
size_update_period=4,
|
168 |
+
clipping_update_period=100,
|
169 |
+
parameters_names=None,
|
170 |
+
show_dominant_parameters=True,
|
171 |
+
):
|
172 |
+
assert parameters_names is not None, (
|
173 |
+
"Please prepare parameters_names,which is a List[List[str]]. Each List[str] is for a groupand each str is for a parameter"
|
174 |
+
)
|
175 |
+
defaults = dict(
|
176 |
+
lr=lr,
|
177 |
+
clipping_scale=clipping_scale,
|
178 |
+
betas=betas,
|
179 |
+
scalar_lr_scale=scalar_lr_scale,
|
180 |
+
eps=eps,
|
181 |
+
param_min_rms=param_min_rms,
|
182 |
+
param_max_rms=param_max_rms,
|
183 |
+
scalar_max=scalar_max,
|
184 |
+
size_update_period=size_update_period,
|
185 |
+
clipping_update_period=clipping_update_period,
|
186 |
+
)
|
187 |
+
|
188 |
+
super(ScaledAdam, self).__init__(params, defaults)
|
189 |
+
assert len(self.param_groups) == len(parameters_names)
|
190 |
+
self.parameters_names = parameters_names
|
191 |
+
self.show_dominant_parameters = show_dominant_parameters
|
192 |
+
|
193 |
+
def __setstate__(self, state):
|
194 |
+
super(ScaledAdam, self).__setstate__(state)
|
195 |
+
|
196 |
+
@torch.no_grad()
|
197 |
+
def step(self, closure=None):
|
198 |
+
"""Performs a single optimization step.
|
199 |
+
|
200 |
+
Arguments:
|
201 |
+
closure (callable, optional): A closure that reevaluates the model
|
202 |
+
and returns the loss.
|
203 |
+
"""
|
204 |
+
loss = None
|
205 |
+
if closure is not None:
|
206 |
+
with torch.enable_grad():
|
207 |
+
loss = closure()
|
208 |
+
|
209 |
+
batch = True
|
210 |
+
|
211 |
+
for group, group_params_names in zip(self.param_groups, self.parameters_names):
|
212 |
+
with self.batched_params(group["params"], group_params_names) as batches:
|
213 |
+
# batches is list of pairs (stacked_param, state). stacked_param is like
|
214 |
+
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
|
215 |
+
# a stacking dim, it is not a real dim.
|
216 |
+
|
217 |
+
if len(batches[0][1]) == 0: # if len(first state) == 0: not yet initialized
|
218 |
+
clipping_scale = 1
|
219 |
+
else:
|
220 |
+
clipping_scale = self._get_clipping_scale(group, batches)
|
221 |
+
|
222 |
+
for p, state, _ in batches:
|
223 |
+
# Perform optimization step.
|
224 |
+
# grad is not going to be None, we handled that when creating the batches.
|
225 |
+
grad = p.grad
|
226 |
+
if grad.is_sparse:
|
227 |
+
raise RuntimeError("ScaledAdam optimizer does not support sparse gradients")
|
228 |
+
# State initialization
|
229 |
+
if len(state) == 0:
|
230 |
+
self._init_state(group, p, state)
|
231 |
+
|
232 |
+
self._step_one_batch(group, p, state, clipping_scale)
|
233 |
+
|
234 |
+
return loss
|
235 |
+
|
236 |
+
def _init_state(self, group: dict, p: Tensor, state: dict):
|
237 |
+
"""
|
238 |
+
Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p
|
239 |
+
is actually the batch dimension, corresponding to batched-together
|
240 |
+
parameters of a given shape.
|
241 |
+
|
242 |
+
|
243 |
+
Args:
|
244 |
+
group: Dict to look up configuration values.
|
245 |
+
p: The parameter that we are initializing the state for
|
246 |
+
state: Dict from string to whatever state we are initializing
|
247 |
+
"""
|
248 |
+
size_update_period = group["size_update_period"]
|
249 |
+
|
250 |
+
state["step"] = 0
|
251 |
+
|
252 |
+
kwargs = {"device": p.device, "dtype": p.dtype}
|
253 |
+
|
254 |
+
# 'delta' implements conventional momentum. There are
|
255 |
+
# several different kinds of update going on, so rather than
|
256 |
+
# compute "exp_avg" like in Adam, we store and decay a
|
257 |
+
# parameter-change "delta", which combines all forms of
|
258 |
+
# update. this is equivalent to how it's done in Adam,
|
259 |
+
# except for the first few steps.
|
260 |
+
state["delta"] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
261 |
+
|
262 |
+
batch_size = p.shape[0]
|
263 |
+
numel = p.numel() // batch_size
|
264 |
+
numel = p.numel()
|
265 |
+
|
266 |
+
if numel > 1:
|
267 |
+
# "param_rms" just periodically records the scalar root-mean-square value of
|
268 |
+
# the parameter tensor.
|
269 |
+
# it has a shape like (batch_size, 1, 1, 1, 1)
|
270 |
+
param_rms = (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt()
|
271 |
+
state["param_rms"] = param_rms
|
272 |
+
|
273 |
+
state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
|
274 |
+
state["scale_grads"] = torch.zeros(size_update_period, *param_rms.shape, **kwargs)
|
275 |
+
|
276 |
+
# exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
|
277 |
+
state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
278 |
+
|
279 |
+
def _get_clipping_scale(self, group: dict, tuples: List[Tuple[Tensor, dict, List[str]]]) -> float:
|
280 |
+
"""
|
281 |
+
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
|
282 |
+
by this amount before applying the rest of the update.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
group: the parameter group, an item in self.param_groups
|
286 |
+
tuples: a list of tuples of (param, state, param_names)
|
287 |
+
where param is a batched set of parameters,
|
288 |
+
with a .grad (1st dim is batch dim)
|
289 |
+
and state is the state-dict where optimization parameters are kept.
|
290 |
+
param_names is a List[str] while each str is name for a parameter
|
291 |
+
in batched set of parameters "param".
|
292 |
+
"""
|
293 |
+
assert len(tuples) >= 1
|
294 |
+
clipping_scale = group["clipping_scale"]
|
295 |
+
(first_p, first_state, _) = tuples[0]
|
296 |
+
step = first_state["step"]
|
297 |
+
if clipping_scale is None or step == 0:
|
298 |
+
# no clipping. return early on step == 0 because the other
|
299 |
+
# parameters' state won't have been initialized yet.
|
300 |
+
return 1.0
|
301 |
+
clipping_update_period = group["clipping_update_period"]
|
302 |
+
|
303 |
+
tot_sumsq = torch.tensor(0.0, device=first_p.device)
|
304 |
+
for p, state, param_names in tuples:
|
305 |
+
grad = p.grad
|
306 |
+
if grad.is_sparse:
|
307 |
+
raise RuntimeError("ScaledAdam optimizer does not support sparse gradients")
|
308 |
+
if p.numel() == p.shape[0]: # a batch of scalars
|
309 |
+
tot_sumsq += (grad**2).sum() # sum() to change shape [1] to []
|
310 |
+
else:
|
311 |
+
tot_sumsq += ((grad * state["param_rms"]) ** 2).sum()
|
312 |
+
|
313 |
+
tot_norm = tot_sumsq.sqrt()
|
314 |
+
if "model_norms" not in first_state:
|
315 |
+
first_state["model_norms"] = torch.zeros(clipping_update_period, device=p.device)
|
316 |
+
first_state["model_norms"][step % clipping_update_period] = tot_norm
|
317 |
+
|
318 |
+
if step % clipping_update_period == 0:
|
319 |
+
# Print some stats.
|
320 |
+
# We don't reach here if step == 0 because we would have returned
|
321 |
+
# above.
|
322 |
+
sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
|
323 |
+
quartiles = []
|
324 |
+
for n in range(0, 5):
|
325 |
+
index = min(
|
326 |
+
clipping_update_period - 1,
|
327 |
+
(clipping_update_period // 4) * n,
|
328 |
+
)
|
329 |
+
quartiles.append(sorted_norms[index].item())
|
330 |
+
|
331 |
+
median = quartiles[2]
|
332 |
+
threshold = clipping_scale * median
|
333 |
+
first_state["model_norm_threshold"] = threshold
|
334 |
+
percent_clipped = (
|
335 |
+
first_state["num_clipped"] * 100.0 / clipping_update_period if "num_clipped" in first_state else 0.0
|
336 |
+
)
|
337 |
+
first_state["num_clipped"] = 0
|
338 |
+
quartiles = " ".join(["%.3e" % x for x in quartiles])
|
339 |
+
logging.info(
|
340 |
+
f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
|
341 |
+
)
|
342 |
+
|
343 |
+
if step < clipping_update_period:
|
344 |
+
return 1.0 # We have not yet estimated a norm to clip to.
|
345 |
+
else:
|
346 |
+
try:
|
347 |
+
model_norm_threshold = first_state["model_norm_threshold"]
|
348 |
+
except KeyError:
|
349 |
+
logging.info(
|
350 |
+
"Warning: model_norm_threshold not in state: possibly you changed config when restarting, adding clipping_scale option?"
|
351 |
+
)
|
352 |
+
return 1.0
|
353 |
+
ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
|
354 |
+
if ans < 1.0:
|
355 |
+
first_state["num_clipped"] += 1
|
356 |
+
if ans < 0.1:
|
357 |
+
logging.warning(f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}")
|
358 |
+
if self.show_dominant_parameters:
|
359 |
+
assert p.shape[0] == len(param_names)
|
360 |
+
self._show_gradient_dominating_parameter(tuples, tot_sumsq)
|
361 |
+
return ans
|
362 |
+
|
363 |
+
def _show_gradient_dominating_parameter(self, tuples: List[Tuple[Tensor, dict, List[str]]], tot_sumsq: Tensor):
|
364 |
+
"""
|
365 |
+
Show information of parameter which dominating tot_sumsq.
|
366 |
+
|
367 |
+
Args:
|
368 |
+
tuples: a list of tuples of (param, state, param_names)
|
369 |
+
where param is a batched set of parameters,
|
370 |
+
with a .grad (1st dim is batch dim)
|
371 |
+
and state is the state-dict where optimization parameters are kept.
|
372 |
+
param_names is a List[str] while each str is name for a parameter
|
373 |
+
in batched set of parameters "param".
|
374 |
+
tot_sumsq: sumsq of all parameters. Though it's could be calculated
|
375 |
+
from tuples, we still pass it to save some time.
|
376 |
+
"""
|
377 |
+
all_sumsq_orig = {}
|
378 |
+
for p, state, batch_param_names in tuples:
|
379 |
+
# p is a stacked batch parameters.
|
380 |
+
batch_grad = p.grad
|
381 |
+
if p.numel() == p.shape[0]: # a batch of scalars
|
382 |
+
batch_sumsq_orig = batch_grad**2
|
383 |
+
# Dummpy values used by following `zip` statement.
|
384 |
+
batch_rms_orig = torch.ones(p.shape[0])
|
385 |
+
else:
|
386 |
+
batch_rms_orig = state["param_rms"]
|
387 |
+
batch_sumsq_orig = ((batch_grad * batch_rms_orig) ** 2).sum(dim=list(range(1, batch_grad.ndim)))
|
388 |
+
|
389 |
+
for name, sumsq_orig, rms, grad in zip(
|
390 |
+
batch_param_names,
|
391 |
+
batch_sumsq_orig,
|
392 |
+
batch_rms_orig,
|
393 |
+
batch_grad,
|
394 |
+
):
|
395 |
+
proportion_orig = sumsq_orig / tot_sumsq
|
396 |
+
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
|
397 |
+
|
398 |
+
assert torch.isclose(
|
399 |
+
sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
|
400 |
+
torch.tensor(1.0),
|
401 |
+
)
|
402 |
+
sorted_by_proportion = {
|
403 |
+
k: v
|
404 |
+
for k, v in sorted(
|
405 |
+
all_sumsq_orig.items(),
|
406 |
+
key=lambda item: item[1][0],
|
407 |
+
reverse=True,
|
408 |
+
)
|
409 |
+
}
|
410 |
+
dominant_param_name = next(iter(sorted_by_proportion))
|
411 |
+
(
|
412 |
+
dominant_proportion,
|
413 |
+
dominant_sumsq,
|
414 |
+
dominant_rms,
|
415 |
+
dominant_grad,
|
416 |
+
) = sorted_by_proportion[dominant_param_name]
|
417 |
+
logging.info(
|
418 |
+
f"Parameter Dominating tot_sumsq {dominant_param_name}"
|
419 |
+
f" with proportion {dominant_proportion:.2f},"
|
420 |
+
f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
|
421 |
+
f"={dominant_sumsq:.3e},"
|
422 |
+
f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
|
423 |
+
f" orig_rms_sq={(dominant_rms**2).item():.3e}"
|
424 |
+
)
|
425 |
+
|
426 |
+
def _step_one_batch(self, group: dict, p: Tensor, state: dict, clipping_scale: float):
|
427 |
+
"""
|
428 |
+
Do the step for one parameter, which is actually going to be a batch of
|
429 |
+
`real` parameters, with dim 0 as the batch dim.
|
430 |
+
Args:
|
431 |
+
group: dict to look up configuration values
|
432 |
+
p: parameter to update (actually multiple parameters stacked together
|
433 |
+
as a batch)
|
434 |
+
state: state-dict for p, to look up the optimizer state
|
435 |
+
"""
|
436 |
+
lr = group["lr"]
|
437 |
+
size_update_period = group["size_update_period"]
|
438 |
+
beta1 = group["betas"][0]
|
439 |
+
|
440 |
+
grad = p.grad
|
441 |
+
if clipping_scale != 1.0:
|
442 |
+
grad = grad * clipping_scale
|
443 |
+
step = state["step"]
|
444 |
+
delta = state["delta"]
|
445 |
+
|
446 |
+
delta.mul_(beta1)
|
447 |
+
batch_size = p.shape[0]
|
448 |
+
numel = p.numel() // batch_size
|
449 |
+
if numel > 1:
|
450 |
+
# Update the size/scale of p, and set param_rms
|
451 |
+
scale_grads = state["scale_grads"]
|
452 |
+
scale_grads[step % size_update_period] = (p * grad).sum(dim=list(range(1, p.ndim)), keepdim=True)
|
453 |
+
if step % size_update_period == size_update_period - 1:
|
454 |
+
param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..)
|
455 |
+
param_rms.copy_((p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt())
|
456 |
+
if step > 0:
|
457 |
+
# self._size_update() learns the overall scale on the
|
458 |
+
# parameter, by shrinking or expanding it.
|
459 |
+
self._size_update(group, scale_grads, p, state)
|
460 |
+
|
461 |
+
if numel == 1:
|
462 |
+
# For parameters with 1 element we just use regular Adam.
|
463 |
+
# Updates delta.
|
464 |
+
self._step_scalar(group, p, state)
|
465 |
+
else:
|
466 |
+
self._step(group, p, state)
|
467 |
+
|
468 |
+
state["step"] = step + 1
|
469 |
+
|
470 |
+
def _size_update(
|
471 |
+
self,
|
472 |
+
group: dict,
|
473 |
+
scale_grads: Tensor,
|
474 |
+
p: Tensor,
|
475 |
+
state: dict,
|
476 |
+
) -> None:
|
477 |
+
"""
|
478 |
+
Called only where p.numel() > 1, this updates the scale of the parameter.
|
479 |
+
If we imagine: p = underlying_param * scale.exp(), and we are doing
|
480 |
+
gradient descent on underlying param and on scale, this function does the update
|
481 |
+
on `scale`.
|
482 |
+
|
483 |
+
Args:
|
484 |
+
group: dict to look up configuration values
|
485 |
+
scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
|
486 |
+
grads w.r.t. the scales.
|
487 |
+
p: The parameter to update
|
488 |
+
state: The state-dict of p
|
489 |
+
"""
|
490 |
+
|
491 |
+
param_rms = state["param_rms"]
|
492 |
+
beta1, beta2 = group["betas"]
|
493 |
+
size_lr = group["lr"] * group["scalar_lr_scale"]
|
494 |
+
param_min_rms = group["param_min_rms"]
|
495 |
+
param_max_rms = group["param_max_rms"]
|
496 |
+
eps = group["eps"]
|
497 |
+
step = state["step"]
|
498 |
+
batch_size = p.shape[0]
|
499 |
+
|
500 |
+
size_update_period = scale_grads.shape[0]
|
501 |
+
# correct beta2 for the size update period: we will have
|
502 |
+
# faster decay at this level.
|
503 |
+
beta2_corr = beta2**size_update_period
|
504 |
+
|
505 |
+
scale_exp_avg_sq = state["scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..)
|
506 |
+
scale_exp_avg_sq.mul_(beta2_corr).add_(
|
507 |
+
(scale_grads**2).mean(dim=0), # mean over dim `size_update_period`
|
508 |
+
alpha=1 - beta2_corr,
|
509 |
+
) # shape is (batch_size, 1, 1, ...)
|
510 |
+
|
511 |
+
# The 1st time we reach here is when size_step == 1.
|
512 |
+
size_step = (step + 1) // size_update_period
|
513 |
+
bias_correction2 = 1 - beta2_corr**size_step
|
514 |
+
# we don't bother with bias_correction1; this will help prevent divergence
|
515 |
+
# at the start of training.
|
516 |
+
|
517 |
+
denom = scale_exp_avg_sq.sqrt() + eps
|
518 |
+
|
519 |
+
scale_step = -size_lr * (bias_correction2**0.5) * scale_grads.sum(dim=0) / denom
|
520 |
+
|
521 |
+
is_too_small = param_rms < param_min_rms
|
522 |
+
is_too_large = param_rms > param_max_rms
|
523 |
+
|
524 |
+
# when the param gets too small, just don't shrink it any further.
|
525 |
+
scale_step.masked_fill_(is_too_small, 0.0)
|
526 |
+
# when it gets too large, stop it from getting any larger.
|
527 |
+
scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
|
528 |
+
delta = state["delta"]
|
529 |
+
# the factor of (1-beta1) relates to momentum.
|
530 |
+
delta.add_(p * scale_step, alpha=(1 - beta1))
|
531 |
+
|
532 |
+
def _step(self, group: dict, p: Tensor, state: dict):
|
533 |
+
"""
|
534 |
+
This function does the core update of self.step(), in the case where the members of
|
535 |
+
the batch have more than 1 element.
|
536 |
+
|
537 |
+
Args:
|
538 |
+
group: A dict which will be used to look up configuration values
|
539 |
+
p: The parameter to be updated
|
540 |
+
grad: The grad of p
|
541 |
+
state: The state-dict corresponding to parameter p
|
542 |
+
|
543 |
+
This function modifies p.
|
544 |
+
"""
|
545 |
+
grad = p.grad
|
546 |
+
lr = group["lr"]
|
547 |
+
beta1, beta2 = group["betas"]
|
548 |
+
eps = group["eps"]
|
549 |
+
param_min_rms = group["param_min_rms"]
|
550 |
+
step = state["step"]
|
551 |
+
|
552 |
+
exp_avg_sq = state["exp_avg_sq"]
|
553 |
+
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))
|
554 |
+
|
555 |
+
this_step = state["step"] - (state["zero_step"] if "zero_step" in state else 0)
|
556 |
+
bias_correction2 = 1 - beta2 ** (this_step + 1)
|
557 |
+
if bias_correction2 < 0.99:
|
558 |
+
# note: not in-place.
|
559 |
+
exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
|
560 |
+
|
561 |
+
denom = exp_avg_sq.sqrt()
|
562 |
+
denom += eps
|
563 |
+
grad = grad / denom
|
564 |
+
|
565 |
+
alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)
|
566 |
+
|
567 |
+
delta = state["delta"]
|
568 |
+
delta.add_(grad * alpha)
|
569 |
+
p.add_(delta)
|
570 |
+
|
571 |
+
def _step_scalar(self, group: dict, p: Tensor, state: dict):
|
572 |
+
"""
|
573 |
+
A simplified form of the core update for scalar tensors, where we cannot get a good
|
574 |
+
estimate of the parameter rms.
|
575 |
+
"""
|
576 |
+
beta1, beta2 = group["betas"]
|
577 |
+
scalar_max = group["scalar_max"]
|
578 |
+
eps = group["eps"]
|
579 |
+
lr = group["lr"] * group["scalar_lr_scale"]
|
580 |
+
grad = p.grad
|
581 |
+
|
582 |
+
exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,)
|
583 |
+
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
584 |
+
|
585 |
+
# bias_correction2 is like in Adam. Don't bother with bias_correction1;
|
586 |
+
# slower update at the start will help stability anyway.
|
587 |
+
bias_correction2 = 1 - beta2 ** (state["step"] + 1)
|
588 |
+
denom = (exp_avg_sq / bias_correction2).sqrt() + eps
|
589 |
+
|
590 |
+
delta = state["delta"]
|
591 |
+
delta.add_(grad / denom, alpha=-lr * (1 - beta1))
|
592 |
+
p.clamp_(min=-scalar_max, max=scalar_max)
|
593 |
+
p.add_(delta)
|
AR/modules/patched_mha_with_cache.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn.functional import *
|
2 |
+
from torch.nn.functional import (
|
3 |
+
_mha_shape_check,
|
4 |
+
_canonical_mask,
|
5 |
+
_none_or_dtype,
|
6 |
+
_in_projection_packed,
|
7 |
+
)
|
8 |
+
import torch
|
9 |
+
# Tensor = torch.Tensor
|
10 |
+
# from typing import Callable, List, Optional, Tuple, Union
|
11 |
+
|
12 |
+
|
13 |
+
def multi_head_attention_forward_patched(
|
14 |
+
query,
|
15 |
+
key,
|
16 |
+
value,
|
17 |
+
embed_dim_to_check,
|
18 |
+
num_heads,
|
19 |
+
in_proj_weight,
|
20 |
+
in_proj_bias,
|
21 |
+
bias_k,
|
22 |
+
bias_v,
|
23 |
+
add_zero_attn,
|
24 |
+
dropout_p: float,
|
25 |
+
out_proj_weight,
|
26 |
+
out_proj_bias,
|
27 |
+
training=True,
|
28 |
+
key_padding_mask=None,
|
29 |
+
need_weights=True,
|
30 |
+
attn_mask=None,
|
31 |
+
use_separate_proj_weight=False,
|
32 |
+
q_proj_weight=None,
|
33 |
+
k_proj_weight=None,
|
34 |
+
v_proj_weight=None,
|
35 |
+
static_k=None,
|
36 |
+
static_v=None,
|
37 |
+
average_attn_weights=True,
|
38 |
+
is_causal=False,
|
39 |
+
cache=None,
|
40 |
+
):
|
41 |
+
r"""
|
42 |
+
Args:
|
43 |
+
query, key, value: map a query and a set of key-value pairs to an output.
|
44 |
+
See "Attention Is All You Need" for more details.
|
45 |
+
embed_dim_to_check: total dimension of the model.
|
46 |
+
num_heads: parallel attention heads.
|
47 |
+
in_proj_weight, in_proj_bias: input projection weight and bias.
|
48 |
+
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
49 |
+
add_zero_attn: add a new batch of zeros to the key and
|
50 |
+
value sequences at dim=1.
|
51 |
+
dropout_p: probability of an element to be zeroed.
|
52 |
+
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
53 |
+
training: apply dropout if is ``True``.
|
54 |
+
key_padding_mask: if provided, specified padding elements in the key will
|
55 |
+
be ignored by the attention. This is an binary mask. When the value is True,
|
56 |
+
the corresponding value on the attention layer will be filled with -inf.
|
57 |
+
need_weights: output attn_output_weights.
|
58 |
+
Default: `True`
|
59 |
+
Note: `needs_weight` defaults to `True`, but should be set to `False`
|
60 |
+
For best performance when attention weights are not nedeeded.
|
61 |
+
*Setting needs_weights to `True`
|
62 |
+
leads to a significant performance degradation.*
|
63 |
+
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
64 |
+
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
65 |
+
is_causal: If specified, applies a causal mask as attention mask, and ignores
|
66 |
+
attn_mask for computing scaled dot product attention.
|
67 |
+
Default: ``False``.
|
68 |
+
.. warning::
|
69 |
+
is_causal is provides a hint that the attn_mask is the
|
70 |
+
causal mask.Providing incorrect hints can result in
|
71 |
+
incorrect execution, including forward and backward
|
72 |
+
compatibility.
|
73 |
+
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
74 |
+
and value in different forms. If false, in_proj_weight will be used, which is
|
75 |
+
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
76 |
+
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
77 |
+
static_k, static_v: static key and value used for attention operators.
|
78 |
+
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
|
79 |
+
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
|
80 |
+
when ``need_weights=True.``. Default: True
|
81 |
+
|
82 |
+
|
83 |
+
Shape:
|
84 |
+
Inputs:
|
85 |
+
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
86 |
+
the embedding dimension.
|
87 |
+
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
88 |
+
the embedding dimension.
|
89 |
+
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
90 |
+
the embedding dimension.
|
91 |
+
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
92 |
+
If a FloatTensor is provided, it will be directly added to the value.
|
93 |
+
If a BoolTensor is provided, the positions with the
|
94 |
+
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
95 |
+
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
96 |
+
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
97 |
+
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
98 |
+
positions. If a BoolTensor is provided, positions with ``True``
|
99 |
+
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
100 |
+
is provided, it will be added to the attention weight.
|
101 |
+
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
102 |
+
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
103 |
+
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
104 |
+
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
105 |
+
|
106 |
+
Outputs:
|
107 |
+
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
108 |
+
E is the embedding dimension.
|
109 |
+
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
|
110 |
+
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
111 |
+
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
112 |
+
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
113 |
+
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
|
114 |
+
"""
|
115 |
+
tens_ops = (
|
116 |
+
query,
|
117 |
+
key,
|
118 |
+
value,
|
119 |
+
in_proj_weight,
|
120 |
+
in_proj_bias,
|
121 |
+
bias_k,
|
122 |
+
bias_v,
|
123 |
+
out_proj_weight,
|
124 |
+
out_proj_bias,
|
125 |
+
)
|
126 |
+
if has_torch_function(tens_ops):
|
127 |
+
return handle_torch_function(
|
128 |
+
multi_head_attention_forward,
|
129 |
+
tens_ops,
|
130 |
+
query,
|
131 |
+
key,
|
132 |
+
value,
|
133 |
+
embed_dim_to_check,
|
134 |
+
num_heads,
|
135 |
+
in_proj_weight,
|
136 |
+
in_proj_bias,
|
137 |
+
bias_k,
|
138 |
+
bias_v,
|
139 |
+
add_zero_attn,
|
140 |
+
dropout_p,
|
141 |
+
out_proj_weight,
|
142 |
+
out_proj_bias,
|
143 |
+
training=training,
|
144 |
+
key_padding_mask=key_padding_mask,
|
145 |
+
need_weights=need_weights,
|
146 |
+
attn_mask=attn_mask,
|
147 |
+
is_causal=is_causal,
|
148 |
+
use_separate_proj_weight=use_separate_proj_weight,
|
149 |
+
q_proj_weight=q_proj_weight,
|
150 |
+
k_proj_weight=k_proj_weight,
|
151 |
+
v_proj_weight=v_proj_weight,
|
152 |
+
static_k=static_k,
|
153 |
+
static_v=static_v,
|
154 |
+
average_attn_weights=average_attn_weights,
|
155 |
+
cache=cache,
|
156 |
+
)
|
157 |
+
|
158 |
+
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
|
159 |
+
|
160 |
+
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
161 |
+
# is batched, run the computation and before returning squeeze the
|
162 |
+
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
163 |
+
if not is_batched:
|
164 |
+
# unsqueeze if the input is unbatched
|
165 |
+
query = query.unsqueeze(1)
|
166 |
+
key = key.unsqueeze(1)
|
167 |
+
value = value.unsqueeze(1)
|
168 |
+
if key_padding_mask is not None:
|
169 |
+
key_padding_mask = key_padding_mask.unsqueeze(0)
|
170 |
+
|
171 |
+
# set up shape vars
|
172 |
+
tgt_len, bsz, embed_dim = query.shape
|
173 |
+
src_len, _, _ = key.shape
|
174 |
+
|
175 |
+
key_padding_mask = _canonical_mask(
|
176 |
+
mask=key_padding_mask,
|
177 |
+
mask_name="key_padding_mask",
|
178 |
+
other_type=_none_or_dtype(attn_mask),
|
179 |
+
other_name="attn_mask",
|
180 |
+
target_type=query.dtype,
|
181 |
+
)
|
182 |
+
|
183 |
+
if is_causal and attn_mask is None:
|
184 |
+
raise RuntimeError(
|
185 |
+
"Need attn_mask if specifying the is_causal hint. "
|
186 |
+
"You may use the Transformer module method "
|
187 |
+
"`generate_square_subsequent_mask` to create this mask."
|
188 |
+
)
|
189 |
+
|
190 |
+
if is_causal and key_padding_mask is None and not need_weights:
|
191 |
+
# when we have a kpm or need weights, we need attn_mask
|
192 |
+
# Otherwise, we use the is_causal hint go as is_causal
|
193 |
+
# indicator to SDPA.
|
194 |
+
attn_mask = None
|
195 |
+
else:
|
196 |
+
attn_mask = _canonical_mask(
|
197 |
+
mask=attn_mask,
|
198 |
+
mask_name="attn_mask",
|
199 |
+
other_type=None,
|
200 |
+
other_name="",
|
201 |
+
target_type=query.dtype,
|
202 |
+
check_other=False,
|
203 |
+
)
|
204 |
+
|
205 |
+
if key_padding_mask is not None:
|
206 |
+
# We have the attn_mask, and use that to merge kpm into it.
|
207 |
+
# Turn off use of is_causal hint, as the merged mask is no
|
208 |
+
# longer causal.
|
209 |
+
is_causal = False
|
210 |
+
|
211 |
+
assert embed_dim == embed_dim_to_check, (
|
212 |
+
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
213 |
+
)
|
214 |
+
if isinstance(embed_dim, torch.Tensor):
|
215 |
+
# embed_dim can be a tensor when JIT tracing
|
216 |
+
head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
|
217 |
+
else:
|
218 |
+
head_dim = embed_dim // num_heads
|
219 |
+
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
220 |
+
if use_separate_proj_weight:
|
221 |
+
# allow MHA to have different embedding dimensions when separate projection weights are used
|
222 |
+
assert key.shape[:2] == value.shape[:2], (
|
223 |
+
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
224 |
+
)
|
225 |
+
else:
|
226 |
+
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
|
227 |
+
|
228 |
+
#
|
229 |
+
# compute in-projection
|
230 |
+
#
|
231 |
+
if not use_separate_proj_weight:
|
232 |
+
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
|
233 |
+
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
234 |
+
else:
|
235 |
+
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
|
236 |
+
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
|
237 |
+
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
|
238 |
+
if in_proj_bias is None:
|
239 |
+
b_q = b_k = b_v = None
|
240 |
+
else:
|
241 |
+
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
242 |
+
q, k, v = _in_projection(
|
243 |
+
query,
|
244 |
+
key,
|
245 |
+
value,
|
246 |
+
q_proj_weight,
|
247 |
+
k_proj_weight,
|
248 |
+
v_proj_weight,
|
249 |
+
b_q,
|
250 |
+
b_k,
|
251 |
+
b_v,
|
252 |
+
)
|
253 |
+
if cache != None:
|
254 |
+
if cache["first_infer"] == 1:
|
255 |
+
cache["k"][cache["stage"]] = k
|
256 |
+
# print(0,cache["k"].shape)
|
257 |
+
cache["v"][cache["stage"]] = v
|
258 |
+
else: ###12个layer每个都要留自己的cache_kv
|
259 |
+
# print(1,cache["k"].shape)
|
260 |
+
cache["k"][cache["stage"]] = torch.cat(
|
261 |
+
[cache["k"][cache["stage"]], k], 0
|
262 |
+
) ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
|
263 |
+
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
|
264 |
+
# print(2, cache["k"].shape)
|
265 |
+
src_len = cache["k"][cache["stage"]].shape[0]
|
266 |
+
k = cache["k"][cache["stage"]]
|
267 |
+
v = cache["v"][cache["stage"]]
|
268 |
+
# if attn_mask is not None:
|
269 |
+
# attn_mask=attn_mask[-1:,]
|
270 |
+
# print(attn_mask.shape,attn_mask)
|
271 |
+
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
272 |
+
# print(2333,cache)
|
273 |
+
# prep attention mask
|
274 |
+
|
275 |
+
attn_mask = _canonical_mask(
|
276 |
+
mask=attn_mask,
|
277 |
+
mask_name="attn_mask",
|
278 |
+
other_type=None,
|
279 |
+
other_name="",
|
280 |
+
target_type=q.dtype,
|
281 |
+
check_other=False,
|
282 |
+
)
|
283 |
+
|
284 |
+
if attn_mask is not None:
|
285 |
+
# ensure attn_mask's dim is 3
|
286 |
+
if attn_mask.dim() == 2:
|
287 |
+
correct_2d_size = (tgt_len, src_len)
|
288 |
+
if attn_mask.shape != correct_2d_size:
|
289 |
+
raise RuntimeError(
|
290 |
+
f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
|
291 |
+
)
|
292 |
+
attn_mask = attn_mask.unsqueeze(0)
|
293 |
+
elif attn_mask.dim() == 3:
|
294 |
+
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
295 |
+
if attn_mask.shape != correct_3d_size:
|
296 |
+
raise RuntimeError(
|
297 |
+
f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
301 |
+
|
302 |
+
# add bias along batch dimension (currently second)
|
303 |
+
if bias_k is not None and bias_v is not None:
|
304 |
+
assert static_k is None, "bias cannot be added to static key."
|
305 |
+
assert static_v is None, "bias cannot be added to static value."
|
306 |
+
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
307 |
+
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
308 |
+
if attn_mask is not None:
|
309 |
+
attn_mask = pad(attn_mask, (0, 1))
|
310 |
+
if key_padding_mask is not None:
|
311 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
312 |
+
else:
|
313 |
+
assert bias_k is None
|
314 |
+
assert bias_v is None
|
315 |
+
|
316 |
+
#
|
317 |
+
# reshape q, k, v for multihead attention and make em batch first
|
318 |
+
#
|
319 |
+
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
320 |
+
if static_k is None:
|
321 |
+
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
322 |
+
else:
|
323 |
+
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
324 |
+
assert static_k.size(0) == bsz * num_heads, (
|
325 |
+
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
326 |
+
)
|
327 |
+
assert static_k.size(2) == head_dim, f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
328 |
+
k = static_k
|
329 |
+
if static_v is None:
|
330 |
+
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
331 |
+
else:
|
332 |
+
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
333 |
+
assert static_v.size(0) == bsz * num_heads, (
|
334 |
+
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
335 |
+
)
|
336 |
+
assert static_v.size(2) == head_dim, f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
337 |
+
v = static_v
|
338 |
+
|
339 |
+
# add zero attention along batch dimension (now first)
|
340 |
+
if add_zero_attn:
|
341 |
+
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
342 |
+
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
|
343 |
+
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
|
344 |
+
if attn_mask is not None:
|
345 |
+
attn_mask = pad(attn_mask, (0, 1))
|
346 |
+
if key_padding_mask is not None:
|
347 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
348 |
+
|
349 |
+
# update source sequence length after adjustments
|
350 |
+
src_len = k.size(1)
|
351 |
+
|
352 |
+
# merge key padding and attention masks
|
353 |
+
if key_padding_mask is not None:
|
354 |
+
assert key_padding_mask.shape == (
|
355 |
+
bsz,
|
356 |
+
src_len,
|
357 |
+
), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
358 |
+
key_padding_mask = (
|
359 |
+
key_padding_mask.view(bsz, 1, 1, src_len).expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
|
360 |
+
)
|
361 |
+
if attn_mask is None:
|
362 |
+
attn_mask = key_padding_mask
|
363 |
+
else:
|
364 |
+
attn_mask = attn_mask + key_padding_mask
|
365 |
+
|
366 |
+
# adjust dropout probability
|
367 |
+
if not training:
|
368 |
+
dropout_p = 0.0
|
369 |
+
|
370 |
+
#
|
371 |
+
# (deep breath) calculate attention and out projection
|
372 |
+
#
|
373 |
+
|
374 |
+
if need_weights:
|
375 |
+
B, Nt, E = q.shape
|
376 |
+
q_scaled = q / math.sqrt(E)
|
377 |
+
|
378 |
+
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
|
379 |
+
|
380 |
+
if attn_mask is not None:
|
381 |
+
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
|
382 |
+
else:
|
383 |
+
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
384 |
+
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
385 |
+
if dropout_p > 0.0:
|
386 |
+
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
387 |
+
|
388 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
389 |
+
|
390 |
+
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
391 |
+
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
392 |
+
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
393 |
+
|
394 |
+
# optionally average attention weights over heads
|
395 |
+
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
396 |
+
if average_attn_weights:
|
397 |
+
attn_output_weights = attn_output_weights.mean(dim=1)
|
398 |
+
|
399 |
+
if not is_batched:
|
400 |
+
# squeeze the output if input was unbatched
|
401 |
+
attn_output = attn_output.squeeze(1)
|
402 |
+
attn_output_weights = attn_output_weights.squeeze(0)
|
403 |
+
return attn_output, attn_output_weights
|
404 |
+
else:
|
405 |
+
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
406 |
+
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
407 |
+
# in order to match the input for SDPA of (N, num_heads, L, S)
|
408 |
+
if attn_mask is not None:
|
409 |
+
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
410 |
+
attn_mask = attn_mask.unsqueeze(0)
|
411 |
+
else:
|
412 |
+
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
413 |
+
|
414 |
+
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
415 |
+
k = k.view(bsz, num_heads, src_len, head_dim)
|
416 |
+
v = v.view(bsz, num_heads, src_len, head_dim)
|
417 |
+
|
418 |
+
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
|
419 |
+
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
420 |
+
|
421 |
+
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
422 |
+
|
423 |
+
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
424 |
+
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
425 |
+
if not is_batched:
|
426 |
+
# squeeze the output if input was unbatched
|
427 |
+
attn_output = attn_output.squeeze(1)
|
428 |
+
return attn_output, None
|
AR/modules/patched_mha_with_cache_onnx.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn.functional import *
|
2 |
+
from torch.nn.functional import (
|
3 |
+
_canonical_mask,
|
4 |
+
)
|
5 |
+
|
6 |
+
|
7 |
+
def multi_head_attention_forward_patched(
|
8 |
+
query,
|
9 |
+
key,
|
10 |
+
value,
|
11 |
+
embed_dim_to_check: int,
|
12 |
+
num_heads: int,
|
13 |
+
in_proj_weight,
|
14 |
+
in_proj_bias: Optional[Tensor],
|
15 |
+
bias_k: Optional[Tensor],
|
16 |
+
bias_v: Optional[Tensor],
|
17 |
+
add_zero_attn: bool,
|
18 |
+
dropout_p: float,
|
19 |
+
out_proj_weight: Tensor,
|
20 |
+
out_proj_bias: Optional[Tensor],
|
21 |
+
training: bool = True,
|
22 |
+
key_padding_mask: Optional[Tensor] = None,
|
23 |
+
need_weights: bool = True,
|
24 |
+
attn_mask: Optional[Tensor] = None,
|
25 |
+
use_separate_proj_weight: bool = False,
|
26 |
+
q_proj_weight: Optional[Tensor] = None,
|
27 |
+
k_proj_weight: Optional[Tensor] = None,
|
28 |
+
v_proj_weight: Optional[Tensor] = None,
|
29 |
+
static_k: Optional[Tensor] = None,
|
30 |
+
static_v: Optional[Tensor] = None,
|
31 |
+
average_attn_weights: bool = True,
|
32 |
+
is_causal: bool = False,
|
33 |
+
cache=None,
|
34 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
35 |
+
# set up shape vars
|
36 |
+
_, _, embed_dim = query.shape
|
37 |
+
attn_mask = _canonical_mask(
|
38 |
+
mask=attn_mask,
|
39 |
+
mask_name="attn_mask",
|
40 |
+
other_type=None,
|
41 |
+
other_name="",
|
42 |
+
target_type=query.dtype,
|
43 |
+
check_other=False,
|
44 |
+
)
|
45 |
+
head_dim = embed_dim // num_heads
|
46 |
+
|
47 |
+
proj_qkv = linear(query, in_proj_weight, in_proj_bias)
|
48 |
+
proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
49 |
+
q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
|
50 |
+
|
51 |
+
if cache["first_infer"] == 1:
|
52 |
+
cache["k"][cache["stage"]] = k
|
53 |
+
cache["v"][cache["stage"]] = v
|
54 |
+
else:
|
55 |
+
cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
|
56 |
+
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
|
57 |
+
k = cache["k"][cache["stage"]]
|
58 |
+
v = cache["v"][cache["stage"]]
|
59 |
+
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
60 |
+
|
61 |
+
attn_mask = _canonical_mask(
|
62 |
+
mask=attn_mask,
|
63 |
+
mask_name="attn_mask",
|
64 |
+
other_type=None,
|
65 |
+
other_name="",
|
66 |
+
target_type=q.dtype,
|
67 |
+
check_other=False,
|
68 |
+
)
|
69 |
+
attn_mask = attn_mask.unsqueeze(0)
|
70 |
+
|
71 |
+
q = q.view(-1, num_heads, head_dim).transpose(0, 1)
|
72 |
+
k = k.view(-1, num_heads, head_dim).transpose(0, 1)
|
73 |
+
v = v.view(-1, num_heads, head_dim).transpose(0, 1)
|
74 |
+
|
75 |
+
dropout_p = 0.0
|
76 |
+
attn_mask = attn_mask.unsqueeze(0)
|
77 |
+
q = q.view(num_heads, -1, head_dim).unsqueeze(0)
|
78 |
+
k = k.view(num_heads, -1, head_dim).unsqueeze(0)
|
79 |
+
v = v.view(num_heads, -1, head_dim).unsqueeze(0)
|
80 |
+
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
81 |
+
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim)
|
82 |
+
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
83 |
+
attn_output = attn_output.view(-1, 1, attn_output.size(1))
|
84 |
+
|
85 |
+
return attn_output
|
AR/modules/scaling.py
ADDED
@@ -0,0 +1,320 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
2 |
+
#
|
3 |
+
# See ../../../../LICENSE for clarification regarding multiple authors
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
import random
|
17 |
+
from typing import Optional
|
18 |
+
from typing import Tuple
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
from torch import Tensor
|
23 |
+
|
24 |
+
|
25 |
+
class DoubleSwishFunction(torch.autograd.Function):
|
26 |
+
"""
|
27 |
+
double_swish(x) = x * torch.sigmoid(x-1)
|
28 |
+
This is a definition, originally motivated by its close numerical
|
29 |
+
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
|
30 |
+
|
31 |
+
Memory-efficient derivative computation:
|
32 |
+
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
|
33 |
+
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
|
34 |
+
Now, s'(x) = s(x) * (1-s(x)).
|
35 |
+
double_swish'(x) = x * s'(x) + s(x).
|
36 |
+
= x * s(x) * (1-s(x)) + s(x).
|
37 |
+
= double_swish(x) * (1-s(x)) + s(x)
|
38 |
+
... so we just need to remember s(x) but not x itself.
|
39 |
+
"""
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def forward(ctx, x: Tensor) -> Tensor:
|
43 |
+
requires_grad = x.requires_grad
|
44 |
+
x_dtype = x.dtype
|
45 |
+
if x.dtype == torch.float16:
|
46 |
+
x = x.to(torch.float32)
|
47 |
+
|
48 |
+
s = torch.sigmoid(x - 1.0)
|
49 |
+
y = x * s
|
50 |
+
|
51 |
+
if requires_grad:
|
52 |
+
deriv = y * (1 - s) + s
|
53 |
+
# notes on derivative of x * sigmoid(x - 1):
|
54 |
+
# https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
|
55 |
+
# min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
|
56 |
+
# max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
|
57 |
+
# the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
|
58 |
+
# floors), should be expectation-preserving.
|
59 |
+
floor = -0.043637
|
60 |
+
ceil = 1.2
|
61 |
+
d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(deriv)
|
62 |
+
if __name__ == "__main__":
|
63 |
+
# for self-testing only.
|
64 |
+
assert d_scaled.min() >= 0.0
|
65 |
+
assert d_scaled.max() < 256.0
|
66 |
+
d_int = d_scaled.to(torch.uint8)
|
67 |
+
ctx.save_for_backward(d_int)
|
68 |
+
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
69 |
+
y = y.to(torch.float16)
|
70 |
+
return y
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def backward(ctx, y_grad: Tensor) -> Tensor:
|
74 |
+
(d,) = ctx.saved_tensors
|
75 |
+
# the same constants as used in forward pass.
|
76 |
+
floor = -0.043637
|
77 |
+
ceil = 1.2
|
78 |
+
d = d * ((ceil - floor) / 255.0) + floor
|
79 |
+
return y_grad * d
|
80 |
+
|
81 |
+
|
82 |
+
class DoubleSwish(torch.nn.Module):
|
83 |
+
def forward(self, x: Tensor) -> Tensor:
|
84 |
+
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
|
85 |
+
that we approximate closely with x * sigmoid(x-1).
|
86 |
+
"""
|
87 |
+
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
88 |
+
return x * torch.sigmoid(x - 1.0)
|
89 |
+
return DoubleSwishFunction.apply(x)
|
90 |
+
|
91 |
+
|
92 |
+
class ActivationBalancerFunction(torch.autograd.Function):
|
93 |
+
@staticmethod
|
94 |
+
def forward(
|
95 |
+
ctx,
|
96 |
+
x: Tensor,
|
97 |
+
scale_factor: Tensor,
|
98 |
+
sign_factor: Optional[Tensor],
|
99 |
+
channel_dim: int,
|
100 |
+
) -> Tensor:
|
101 |
+
if channel_dim < 0:
|
102 |
+
channel_dim += x.ndim
|
103 |
+
ctx.channel_dim = channel_dim
|
104 |
+
xgt0 = x > 0
|
105 |
+
if sign_factor is None:
|
106 |
+
ctx.save_for_backward(xgt0, scale_factor)
|
107 |
+
else:
|
108 |
+
ctx.save_for_backward(xgt0, scale_factor, sign_factor)
|
109 |
+
return x
|
110 |
+
|
111 |
+
@staticmethod
|
112 |
+
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
|
113 |
+
if len(ctx.saved_tensors) == 3:
|
114 |
+
xgt0, scale_factor, sign_factor = ctx.saved_tensors
|
115 |
+
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
116 |
+
scale_factor = scale_factor.unsqueeze(-1)
|
117 |
+
sign_factor = sign_factor.unsqueeze(-1)
|
118 |
+
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
119 |
+
else:
|
120 |
+
xgt0, scale_factor = ctx.saved_tensors
|
121 |
+
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
122 |
+
scale_factor = scale_factor.unsqueeze(-1)
|
123 |
+
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
124 |
+
neg_delta_grad = x_grad.abs() * factor
|
125 |
+
return (
|
126 |
+
x_grad - neg_delta_grad,
|
127 |
+
None,
|
128 |
+
None,
|
129 |
+
None,
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
def _compute_scale_factor(
|
134 |
+
x: Tensor,
|
135 |
+
channel_dim: int,
|
136 |
+
min_abs: float,
|
137 |
+
max_abs: float,
|
138 |
+
gain_factor: float,
|
139 |
+
max_factor: float,
|
140 |
+
) -> Tensor:
|
141 |
+
if channel_dim < 0:
|
142 |
+
channel_dim += x.ndim
|
143 |
+
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
144 |
+
x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
|
145 |
+
|
146 |
+
if min_abs == 0.0:
|
147 |
+
below_threshold = 0.0
|
148 |
+
else:
|
149 |
+
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
|
150 |
+
# x_abs)_mean , min_abs.
|
151 |
+
below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(min=0, max=max_factor)
|
152 |
+
|
153 |
+
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(min=0, max=max_factor)
|
154 |
+
|
155 |
+
return below_threshold - above_threshold
|
156 |
+
|
157 |
+
|
158 |
+
def _compute_sign_factor(
|
159 |
+
x: Tensor,
|
160 |
+
channel_dim: int,
|
161 |
+
min_positive: float,
|
162 |
+
max_positive: float,
|
163 |
+
gain_factor: float,
|
164 |
+
max_factor: float,
|
165 |
+
) -> Tensor:
|
166 |
+
if channel_dim < 0:
|
167 |
+
channel_dim += x.ndim
|
168 |
+
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
169 |
+
proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
|
170 |
+
if min_positive == 0.0:
|
171 |
+
factor1 = 0.0
|
172 |
+
else:
|
173 |
+
# 0 if proportion_positive >= min_positive, else can be
|
174 |
+
# as large as max_factor.
|
175 |
+
factor1 = ((min_positive - proportion_positive) * (gain_factor / min_positive)).clamp_(min=0, max=max_factor)
|
176 |
+
|
177 |
+
if max_positive == 1.0:
|
178 |
+
factor2 = 0.0
|
179 |
+
else:
|
180 |
+
# 0 if self.proportion_positive <= max_positive, else can be
|
181 |
+
# as large as -max_factor.
|
182 |
+
factor2 = ((proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))).clamp_(
|
183 |
+
min=0, max=max_factor
|
184 |
+
)
|
185 |
+
sign_factor = factor1 - factor2
|
186 |
+
# require min_positive != 0 or max_positive != 1:
|
187 |
+
assert not isinstance(sign_factor, float)
|
188 |
+
return sign_factor
|
189 |
+
|
190 |
+
|
191 |
+
class ActivationBalancer(torch.nn.Module):
|
192 |
+
"""
|
193 |
+
Modifies the backpropped derivatives of a function to try to encourage, for
|
194 |
+
each channel, that it is positive at least a proportion `threshold` of the
|
195 |
+
time. It does this by multiplying negative derivative values by up to
|
196 |
+
(1+max_factor), and positive derivative values by up to (1-max_factor),
|
197 |
+
interpolated from 1 at the threshold to those extremal values when none
|
198 |
+
of the inputs are positive.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
num_channels: the number of channels
|
202 |
+
channel_dim: the dimension/axis corresponding to the channel, e.g.
|
203 |
+
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
|
204 |
+
min_positive: the minimum, per channel, of the proportion of the time
|
205 |
+
that (x > 0), below which we start to modify the derivatives.
|
206 |
+
max_positive: the maximum, per channel, of the proportion of the time
|
207 |
+
that (x > 0), above which we start to modify the derivatives.
|
208 |
+
max_factor: the maximum factor by which we modify the derivatives for
|
209 |
+
either the sign constraint or the magnitude constraint;
|
210 |
+
e.g. with max_factor=0.02, the the derivatives would be multiplied by
|
211 |
+
values in the range [0.98..1.02].
|
212 |
+
sign_gain_factor: determines the 'gain' with which we increase the
|
213 |
+
change in gradient once the constraints on min_positive and max_positive
|
214 |
+
are violated.
|
215 |
+
scale_gain_factor: determines the 'gain' with which we increase the
|
216 |
+
change in gradient once the constraints on min_abs and max_abs
|
217 |
+
are violated.
|
218 |
+
min_abs: the minimum average-absolute-value difference from the mean
|
219 |
+
value per channel, which we allow, before we start to modify
|
220 |
+
the derivatives to prevent this.
|
221 |
+
max_abs: the maximum average-absolute-value difference from the mean
|
222 |
+
value per channel, which we allow, before we start to modify
|
223 |
+
the derivatives to prevent this.
|
224 |
+
min_prob: determines the minimum probability with which we modify the
|
225 |
+
gradients for the {min,max}_positive and {min,max}_abs constraints,
|
226 |
+
on each forward(). This is done randomly to prevent all layers
|
227 |
+
from doing it at the same time. Early in training we may use
|
228 |
+
higher probabilities than this; it will decay to this value.
|
229 |
+
"""
|
230 |
+
|
231 |
+
def __init__(
|
232 |
+
self,
|
233 |
+
num_channels: int,
|
234 |
+
channel_dim: int,
|
235 |
+
min_positive: float = 0.05,
|
236 |
+
max_positive: float = 0.95,
|
237 |
+
max_factor: float = 0.04,
|
238 |
+
sign_gain_factor: float = 0.01,
|
239 |
+
scale_gain_factor: float = 0.02,
|
240 |
+
min_abs: float = 0.2,
|
241 |
+
max_abs: float = 100.0,
|
242 |
+
min_prob: float = 0.1,
|
243 |
+
):
|
244 |
+
super(ActivationBalancer, self).__init__()
|
245 |
+
self.num_channels = num_channels
|
246 |
+
self.channel_dim = channel_dim
|
247 |
+
self.min_positive = min_positive
|
248 |
+
self.max_positive = max_positive
|
249 |
+
self.max_factor = max_factor
|
250 |
+
self.min_abs = min_abs
|
251 |
+
self.max_abs = max_abs
|
252 |
+
self.min_prob = min_prob
|
253 |
+
self.sign_gain_factor = sign_gain_factor
|
254 |
+
self.scale_gain_factor = scale_gain_factor
|
255 |
+
|
256 |
+
# count measures how many times the forward() function has been called.
|
257 |
+
# We occasionally sync this to a tensor called `count`, that exists to
|
258 |
+
# make sure it is synced to disk when we load and save the model.
|
259 |
+
self.cpu_count = 0
|
260 |
+
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
|
261 |
+
|
262 |
+
def forward(self, x: Tensor) -> Tensor:
|
263 |
+
if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing():
|
264 |
+
return _no_op(x)
|
265 |
+
|
266 |
+
count = self.cpu_count
|
267 |
+
self.cpu_count += 1
|
268 |
+
|
269 |
+
if random.random() < 0.01:
|
270 |
+
# Occasionally sync self.cpu_count with self.count.
|
271 |
+
# count affects the decay of 'prob'. don't do this on every iter,
|
272 |
+
# because syncing with the GPU is slow.
|
273 |
+
self.cpu_count = max(self.cpu_count, self.count.item())
|
274 |
+
self.count.fill_(self.cpu_count)
|
275 |
+
|
276 |
+
# the prob of doing some work exponentially decreases from 0.5 till it hits
|
277 |
+
# a floor at min_prob (==0.1, by default)
|
278 |
+
prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
|
279 |
+
|
280 |
+
if random.random() < prob:
|
281 |
+
sign_gain_factor = 0.5
|
282 |
+
if self.min_positive != 0.0 or self.max_positive != 1.0:
|
283 |
+
sign_factor = _compute_sign_factor(
|
284 |
+
x,
|
285 |
+
self.channel_dim,
|
286 |
+
self.min_positive,
|
287 |
+
self.max_positive,
|
288 |
+
gain_factor=self.sign_gain_factor / prob,
|
289 |
+
max_factor=self.max_factor,
|
290 |
+
)
|
291 |
+
else:
|
292 |
+
sign_factor = None
|
293 |
+
|
294 |
+
scale_factor = _compute_scale_factor(
|
295 |
+
x.detach(),
|
296 |
+
self.channel_dim,
|
297 |
+
min_abs=self.min_abs,
|
298 |
+
max_abs=self.max_abs,
|
299 |
+
gain_factor=self.scale_gain_factor / prob,
|
300 |
+
max_factor=self.max_factor,
|
301 |
+
)
|
302 |
+
return ActivationBalancerFunction.apply(
|
303 |
+
x,
|
304 |
+
scale_factor,
|
305 |
+
sign_factor,
|
306 |
+
self.channel_dim,
|
307 |
+
)
|
308 |
+
else:
|
309 |
+
return _no_op(x)
|
310 |
+
|
311 |
+
|
312 |
+
def BalancedDoubleSwish(d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25) -> nn.Sequential:
|
313 |
+
"""
|
314 |
+
ActivationBalancer -> DoubleSwish
|
315 |
+
"""
|
316 |
+
balancer = ActivationBalancer(d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob)
|
317 |
+
return nn.Sequential(
|
318 |
+
balancer,
|
319 |
+
DoubleSwish(),
|
320 |
+
)
|
AR/modules/transformer.py
ADDED
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
2 |
+
import copy
|
3 |
+
import numbers
|
4 |
+
from functools import partial
|
5 |
+
from typing import Any
|
6 |
+
from typing import Callable
|
7 |
+
from typing import List
|
8 |
+
from typing import Optional
|
9 |
+
from typing import Tuple
|
10 |
+
from typing import Union
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from AR.modules.activation import MultiheadAttention
|
14 |
+
from AR.modules.scaling import BalancedDoubleSwish
|
15 |
+
from torch import nn
|
16 |
+
from torch import Tensor
|
17 |
+
from torch.nn import functional as F
|
18 |
+
|
19 |
+
_shape_t = Union[int, List[int], torch.Size]
|
20 |
+
|
21 |
+
|
22 |
+
class LayerNorm(nn.Module):
|
23 |
+
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
24 |
+
normalized_shape: Tuple[int, ...]
|
25 |
+
eps: float
|
26 |
+
elementwise_affine: bool
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
normalized_shape: _shape_t,
|
31 |
+
eps: float = 1e-5,
|
32 |
+
elementwise_affine: bool = True,
|
33 |
+
device=None,
|
34 |
+
dtype=None,
|
35 |
+
) -> None:
|
36 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
37 |
+
super(LayerNorm, self).__init__()
|
38 |
+
if isinstance(normalized_shape, numbers.Integral):
|
39 |
+
# mypy error: incompatible types in assignment
|
40 |
+
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
41 |
+
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
42 |
+
self.eps = eps
|
43 |
+
self.elementwise_affine = elementwise_affine
|
44 |
+
if self.elementwise_affine:
|
45 |
+
self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
46 |
+
self.bias = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
47 |
+
else:
|
48 |
+
self.register_parameter("weight", None)
|
49 |
+
self.register_parameter("bias", None)
|
50 |
+
|
51 |
+
self.reset_parameters()
|
52 |
+
|
53 |
+
def reset_parameters(self) -> None:
|
54 |
+
if self.elementwise_affine:
|
55 |
+
nn.init.ones_(self.weight)
|
56 |
+
nn.init.zeros_(self.bias)
|
57 |
+
|
58 |
+
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
59 |
+
if isinstance(input, tuple):
|
60 |
+
input, embedding = input
|
61 |
+
return (
|
62 |
+
F.layer_norm(
|
63 |
+
input,
|
64 |
+
self.normalized_shape,
|
65 |
+
self.weight,
|
66 |
+
self.bias,
|
67 |
+
self.eps,
|
68 |
+
),
|
69 |
+
embedding,
|
70 |
+
)
|
71 |
+
|
72 |
+
assert embedding is None
|
73 |
+
return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps)
|
74 |
+
|
75 |
+
def extra_repr(self) -> str:
|
76 |
+
return "{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
77 |
+
|
78 |
+
|
79 |
+
class IdentityNorm(nn.Module):
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
d_model: int,
|
83 |
+
eps: float = 1e-5,
|
84 |
+
device=None,
|
85 |
+
dtype=None,
|
86 |
+
) -> None:
|
87 |
+
super(IdentityNorm, self).__init__()
|
88 |
+
|
89 |
+
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
90 |
+
if isinstance(input, tuple):
|
91 |
+
return input
|
92 |
+
|
93 |
+
assert embedding is None
|
94 |
+
return input
|
95 |
+
|
96 |
+
|
97 |
+
class TransformerEncoder(nn.Module):
|
98 |
+
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
99 |
+
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
103 |
+
num_layers: the number of sub-encoder-layers in the encoder (required).
|
104 |
+
norm: the layer normalization component (optional).
|
105 |
+
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
106 |
+
(and convert back on output). This will improve the overall performance of
|
107 |
+
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
108 |
+
|
109 |
+
Examples::
|
110 |
+
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
111 |
+
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
112 |
+
>>> src = torch.rand(10, 32, 512)
|
113 |
+
>>> out = transformer_encoder(src)
|
114 |
+
"""
|
115 |
+
|
116 |
+
__constants__ = ["norm"]
|
117 |
+
|
118 |
+
def __init__(self, encoder_layer, num_layers, norm=None):
|
119 |
+
super(TransformerEncoder, self).__init__()
|
120 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
121 |
+
self.num_layers = num_layers
|
122 |
+
self.norm = norm
|
123 |
+
|
124 |
+
def forward(
|
125 |
+
self,
|
126 |
+
src: Tensor,
|
127 |
+
mask: Optional[Tensor] = None,
|
128 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
129 |
+
return_layer_states: bool = False,
|
130 |
+
cache=None,
|
131 |
+
) -> Tensor:
|
132 |
+
r"""Pass the input through the encoder layers in turn.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
src: the sequence to the encoder (required).
|
136 |
+
mask: the mask for the src sequence (optional).
|
137 |
+
src_key_padding_mask: the mask for the src keys per batch (optional).
|
138 |
+
return_layer_states: return layers' state (optional).
|
139 |
+
|
140 |
+
Shape:
|
141 |
+
see the docs in Transformer class.
|
142 |
+
"""
|
143 |
+
if return_layer_states:
|
144 |
+
layer_states = [] # layers' output
|
145 |
+
output = src
|
146 |
+
for mod in self.layers:
|
147 |
+
output = mod(
|
148 |
+
output,
|
149 |
+
src_mask=mask,
|
150 |
+
src_key_padding_mask=src_key_padding_mask,
|
151 |
+
cache=cache,
|
152 |
+
)
|
153 |
+
layer_states.append(output[0])
|
154 |
+
|
155 |
+
if self.norm is not None:
|
156 |
+
output = self.norm(output)
|
157 |
+
|
158 |
+
return layer_states, output
|
159 |
+
|
160 |
+
output = src
|
161 |
+
for mod in self.layers:
|
162 |
+
output = mod(
|
163 |
+
output,
|
164 |
+
src_mask=mask,
|
165 |
+
src_key_padding_mask=src_key_padding_mask,
|
166 |
+
cache=cache,
|
167 |
+
)
|
168 |
+
|
169 |
+
if self.norm is not None:
|
170 |
+
output = self.norm(output)
|
171 |
+
|
172 |
+
return output
|
173 |
+
|
174 |
+
|
175 |
+
class TransformerEncoderLayer(nn.Module):
|
176 |
+
__constants__ = ["batch_first", "norm_first"]
|
177 |
+
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
d_model: int,
|
181 |
+
nhead: int,
|
182 |
+
dim_feedforward: int = 2048,
|
183 |
+
dropout: float = 0.1,
|
184 |
+
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
185 |
+
batch_first: bool = False,
|
186 |
+
norm_first: bool = False,
|
187 |
+
device=None,
|
188 |
+
dtype=None,
|
189 |
+
linear1_self_attention_cls: nn.Module = nn.Linear,
|
190 |
+
linear2_self_attention_cls: nn.Module = nn.Linear,
|
191 |
+
linear1_feedforward_cls: nn.Module = nn.Linear,
|
192 |
+
linear2_feedforward_cls: nn.Module = nn.Linear,
|
193 |
+
layer_norm_cls: nn.Module = LayerNorm,
|
194 |
+
layer_norm_eps: float = 1e-5,
|
195 |
+
adaptive_layer_norm=False,
|
196 |
+
) -> None:
|
197 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
198 |
+
super(TransformerEncoderLayer, self).__init__()
|
199 |
+
# print(233333333333,d_model,nhead)
|
200 |
+
# import os
|
201 |
+
# os._exit(2333333)
|
202 |
+
self.self_attn = MultiheadAttention(
|
203 |
+
d_model, # 512 16
|
204 |
+
nhead,
|
205 |
+
dropout=dropout,
|
206 |
+
batch_first=batch_first,
|
207 |
+
linear1_cls=linear1_self_attention_cls,
|
208 |
+
linear2_cls=linear2_self_attention_cls,
|
209 |
+
**factory_kwargs,
|
210 |
+
)
|
211 |
+
|
212 |
+
# Implementation of Feedforward model
|
213 |
+
self.linear1 = linear1_feedforward_cls(d_model, dim_feedforward, **factory_kwargs)
|
214 |
+
self.dropout = nn.Dropout(dropout)
|
215 |
+
self.linear2 = linear2_feedforward_cls(dim_feedforward, d_model, **factory_kwargs)
|
216 |
+
|
217 |
+
self.norm_first = norm_first
|
218 |
+
self.dropout1 = nn.Dropout(dropout)
|
219 |
+
self.dropout2 = nn.Dropout(dropout)
|
220 |
+
|
221 |
+
# Legacy string support for activation function.
|
222 |
+
if isinstance(activation, str):
|
223 |
+
activation = _get_activation_fn(activation)
|
224 |
+
elif isinstance(activation, partial):
|
225 |
+
activation = activation(d_model)
|
226 |
+
elif activation == BalancedDoubleSwish:
|
227 |
+
activation = BalancedDoubleSwish(d_model)
|
228 |
+
|
229 |
+
# # We can't test self.activation in forward() in TorchScript,
|
230 |
+
# # so stash some information about it instead.
|
231 |
+
# if activation is F.relu or isinstance(activation, torch.nn.ReLU):
|
232 |
+
# self.activation_relu_or_gelu = 1
|
233 |
+
# elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
|
234 |
+
# self.activation_relu_or_gelu = 2
|
235 |
+
# else:
|
236 |
+
# self.activation_relu_or_gelu = 0
|
237 |
+
self.activation = activation
|
238 |
+
|
239 |
+
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
240 |
+
if layer_norm_cls == IdentityNorm:
|
241 |
+
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
242 |
+
else:
|
243 |
+
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
244 |
+
|
245 |
+
if adaptive_layer_norm:
|
246 |
+
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
247 |
+
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
248 |
+
else:
|
249 |
+
self.norm1 = norm1
|
250 |
+
self.norm2 = norm2
|
251 |
+
|
252 |
+
def __setstate__(self, state):
|
253 |
+
super(TransformerEncoderLayer, self).__setstate__(state)
|
254 |
+
if not hasattr(self, "activation"):
|
255 |
+
self.activation = F.relu
|
256 |
+
|
257 |
+
def forward(
|
258 |
+
self,
|
259 |
+
src: Tensor,
|
260 |
+
src_mask: Optional[Tensor] = None,
|
261 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
262 |
+
cache=None,
|
263 |
+
) -> Tensor:
|
264 |
+
r"""Pass the input through the encoder layer.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
src: the sequence to the encoder layer (required).
|
268 |
+
src_mask: the mask for the src sequence (optional).
|
269 |
+
src_key_padding_mask: the mask for the src keys per batch (optional).
|
270 |
+
|
271 |
+
Shape:
|
272 |
+
see the docs in Transformer class.
|
273 |
+
"""
|
274 |
+
x, stage_embedding = src, None
|
275 |
+
is_src_tuple = False
|
276 |
+
if isinstance(src, tuple):
|
277 |
+
x, stage_embedding = src
|
278 |
+
is_src_tuple = True
|
279 |
+
|
280 |
+
if src_key_padding_mask is not None:
|
281 |
+
_skpm_dtype = src_key_padding_mask.dtype
|
282 |
+
if _skpm_dtype != torch.bool and not torch.is_floating_point(src_key_padding_mask):
|
283 |
+
raise AssertionError("only bool and floating types of key_padding_mask are supported")
|
284 |
+
|
285 |
+
if self.norm_first:
|
286 |
+
x = x + self._sa_block(
|
287 |
+
self.norm1(x, stage_embedding),
|
288 |
+
src_mask,
|
289 |
+
src_key_padding_mask,
|
290 |
+
cache=cache,
|
291 |
+
)
|
292 |
+
x = x + self._ff_block(self.norm2(x, stage_embedding))
|
293 |
+
else:
|
294 |
+
x = self.norm1(
|
295 |
+
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
296 |
+
stage_embedding,
|
297 |
+
)
|
298 |
+
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
299 |
+
|
300 |
+
if is_src_tuple:
|
301 |
+
return (x, stage_embedding)
|
302 |
+
return x
|
303 |
+
|
304 |
+
# self-attention block
|
305 |
+
def _sa_block(
|
306 |
+
self,
|
307 |
+
x: Tensor,
|
308 |
+
attn_mask: Optional[Tensor],
|
309 |
+
key_padding_mask: Optional[Tensor],
|
310 |
+
cache=None,
|
311 |
+
) -> Tensor:
|
312 |
+
# print(x.shape,attn_mask.shape,key_padding_mask)
|
313 |
+
# torch.Size([1, 188, 512]) torch.Size([188, 188]) None
|
314 |
+
# import os
|
315 |
+
# os._exit(23333)
|
316 |
+
x = self.self_attn(
|
317 |
+
x,
|
318 |
+
x,
|
319 |
+
x,
|
320 |
+
attn_mask=attn_mask,
|
321 |
+
key_padding_mask=key_padding_mask,
|
322 |
+
need_weights=False,
|
323 |
+
cache=cache,
|
324 |
+
)[0]
|
325 |
+
return self.dropout1(x)
|
326 |
+
|
327 |
+
# feed forward block
|
328 |
+
def _ff_block(self, x: Tensor) -> Tensor:
|
329 |
+
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
330 |
+
return self.dropout2(x)
|
331 |
+
|
332 |
+
|
333 |
+
class AdaptiveLayerNorm(nn.Module):
|
334 |
+
r"""Adaptive Layer Normalization"""
|
335 |
+
|
336 |
+
def __init__(self, d_model, norm) -> None:
|
337 |
+
super(AdaptiveLayerNorm, self).__init__()
|
338 |
+
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
339 |
+
self.norm = norm
|
340 |
+
self.d_model = d_model
|
341 |
+
self.eps = self.norm.eps
|
342 |
+
|
343 |
+
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
344 |
+
if isinstance(input, tuple):
|
345 |
+
input, embedding = input
|
346 |
+
weight, bias = torch.split(
|
347 |
+
self.project_layer(embedding),
|
348 |
+
split_size_or_sections=self.d_model,
|
349 |
+
dim=-1,
|
350 |
+
)
|
351 |
+
return (weight * self.norm(input) + bias, embedding)
|
352 |
+
|
353 |
+
weight, bias = torch.split(
|
354 |
+
self.project_layer(embedding),
|
355 |
+
split_size_or_sections=self.d_model,
|
356 |
+
dim=-1,
|
357 |
+
)
|
358 |
+
return weight * self.norm(input) + bias
|
359 |
+
|
360 |
+
|
361 |
+
def _get_clones(module, N):
|
362 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
AR/modules/transformer_onnx.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
2 |
+
import copy
|
3 |
+
import numbers
|
4 |
+
from functools import partial
|
5 |
+
from typing import Any
|
6 |
+
from typing import Callable
|
7 |
+
from typing import List
|
8 |
+
from typing import Optional
|
9 |
+
from typing import Tuple
|
10 |
+
from typing import Union
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from AR.modules.activation_onnx import MultiheadAttention
|
14 |
+
from AR.modules.scaling import BalancedDoubleSwish
|
15 |
+
from torch import nn
|
16 |
+
from torch import Tensor
|
17 |
+
from torch.nn import functional as F
|
18 |
+
|
19 |
+
_shape_t = Union[int, List[int], torch.Size]
|
20 |
+
|
21 |
+
|
22 |
+
class LayerNorm(nn.Module):
|
23 |
+
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
24 |
+
normalized_shape: Tuple[int, ...]
|
25 |
+
eps: float
|
26 |
+
elementwise_affine: bool
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
normalized_shape: _shape_t,
|
31 |
+
eps: float = 1e-5,
|
32 |
+
elementwise_affine: bool = True,
|
33 |
+
device=None,
|
34 |
+
dtype=None,
|
35 |
+
) -> None:
|
36 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
37 |
+
super(LayerNorm, self).__init__()
|
38 |
+
if isinstance(normalized_shape, numbers.Integral):
|
39 |
+
# mypy error: incompatible types in assignment
|
40 |
+
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
41 |
+
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
42 |
+
self.eps = eps
|
43 |
+
self.elementwise_affine = elementwise_affine
|
44 |
+
if self.elementwise_affine:
|
45 |
+
self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
46 |
+
self.bias = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
47 |
+
else:
|
48 |
+
self.register_parameter("weight", None)
|
49 |
+
self.register_parameter("bias", None)
|
50 |
+
|
51 |
+
self.reset_parameters()
|
52 |
+
|
53 |
+
def reset_parameters(self) -> None:
|
54 |
+
if self.elementwise_affine:
|
55 |
+
nn.init.ones_(self.weight)
|
56 |
+
nn.init.zeros_(self.bias)
|
57 |
+
|
58 |
+
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
59 |
+
if isinstance(input, tuple):
|
60 |
+
input, embedding = input
|
61 |
+
return (
|
62 |
+
F.layer_norm(
|
63 |
+
input,
|
64 |
+
self.normalized_shape,
|
65 |
+
self.weight,
|
66 |
+
self.bias,
|
67 |
+
self.eps,
|
68 |
+
),
|
69 |
+
embedding,
|
70 |
+
)
|
71 |
+
|
72 |
+
assert embedding is None
|
73 |
+
return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps)
|
74 |
+
|
75 |
+
def extra_repr(self) -> str:
|
76 |
+
return "{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
77 |
+
|
78 |
+
|
79 |
+
class IdentityNorm(nn.Module):
|
80 |
+
def __init__(
|
81 |
+
self,
|
82 |
+
d_model: int,
|
83 |
+
eps: float = 1e-5,
|
84 |
+
device=None,
|
85 |
+
dtype=None,
|
86 |
+
) -> None:
|
87 |
+
super(IdentityNorm, self).__init__()
|
88 |
+
|
89 |
+
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
90 |
+
if isinstance(input, tuple):
|
91 |
+
return input
|
92 |
+
|
93 |
+
assert embedding is None
|
94 |
+
return input
|
95 |
+
|
96 |
+
|
97 |
+
class TransformerEncoder(nn.Module):
|
98 |
+
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
99 |
+
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
100 |
+
|
101 |
+
Args:
|
102 |
+
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
103 |
+
num_layers: the number of sub-encoder-layers in the encoder (required).
|
104 |
+
norm: the layer normalization component (optional).
|
105 |
+
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
106 |
+
(and convert back on output). This will improve the overall performance of
|
107 |
+
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
108 |
+
|
109 |
+
Examples::
|
110 |
+
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
111 |
+
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
112 |
+
>>> src = torch.rand(10, 32, 512)
|
113 |
+
>>> out = transformer_encoder(src)
|
114 |
+
"""
|
115 |
+
|
116 |
+
__constants__ = ["norm"]
|
117 |
+
|
118 |
+
def __init__(self, encoder_layer, num_layers, norm=None):
|
119 |
+
super(TransformerEncoder, self).__init__()
|
120 |
+
self.layers = _get_clones(encoder_layer, num_layers)
|
121 |
+
self.num_layers = num_layers
|
122 |
+
self.norm = norm
|
123 |
+
|
124 |
+
def forward(
|
125 |
+
self,
|
126 |
+
src: Tensor,
|
127 |
+
mask: Optional[Tensor] = None,
|
128 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
129 |
+
return_layer_states: bool = False,
|
130 |
+
cache=None,
|
131 |
+
) -> Tensor:
|
132 |
+
output = src
|
133 |
+
for mod in self.layers:
|
134 |
+
output = mod(
|
135 |
+
output,
|
136 |
+
src_mask=mask,
|
137 |
+
src_key_padding_mask=src_key_padding_mask,
|
138 |
+
cache=cache,
|
139 |
+
)
|
140 |
+
|
141 |
+
if self.norm is not None:
|
142 |
+
output = self.norm(output)
|
143 |
+
|
144 |
+
return output
|
145 |
+
|
146 |
+
|
147 |
+
class TransformerEncoderLayer(nn.Module):
|
148 |
+
__constants__ = ["batch_first", "norm_first"]
|
149 |
+
|
150 |
+
def __init__(
|
151 |
+
self,
|
152 |
+
d_model: int,
|
153 |
+
nhead: int,
|
154 |
+
dim_feedforward: int = 2048,
|
155 |
+
dropout: float = 0.1,
|
156 |
+
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
157 |
+
batch_first: bool = False,
|
158 |
+
norm_first: bool = False,
|
159 |
+
device=None,
|
160 |
+
dtype=None,
|
161 |
+
linear1_self_attention_cls: nn.Module = nn.Linear,
|
162 |
+
linear2_self_attention_cls: nn.Module = nn.Linear,
|
163 |
+
linear1_feedforward_cls: nn.Module = nn.Linear,
|
164 |
+
linear2_feedforward_cls: nn.Module = nn.Linear,
|
165 |
+
layer_norm_cls: nn.Module = LayerNorm,
|
166 |
+
layer_norm_eps: float = 1e-5,
|
167 |
+
adaptive_layer_norm=False,
|
168 |
+
) -> None:
|
169 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
170 |
+
super(TransformerEncoderLayer, self).__init__()
|
171 |
+
self.self_attn = MultiheadAttention(
|
172 |
+
d_model, # 512 16
|
173 |
+
nhead,
|
174 |
+
dropout=dropout,
|
175 |
+
batch_first=batch_first,
|
176 |
+
linear1_cls=linear1_self_attention_cls,
|
177 |
+
linear2_cls=linear2_self_attention_cls,
|
178 |
+
**factory_kwargs,
|
179 |
+
)
|
180 |
+
self.linear1 = linear1_feedforward_cls(d_model, dim_feedforward, **factory_kwargs)
|
181 |
+
self.dropout = nn.Dropout(dropout)
|
182 |
+
self.linear2 = linear2_feedforward_cls(dim_feedforward, d_model, **factory_kwargs)
|
183 |
+
self.norm_first = norm_first
|
184 |
+
self.dropout1 = nn.Dropout(dropout)
|
185 |
+
self.dropout2 = nn.Dropout(dropout)
|
186 |
+
if isinstance(activation, str):
|
187 |
+
activation = _get_activation_fn(activation)
|
188 |
+
elif isinstance(activation, partial):
|
189 |
+
activation = activation(d_model)
|
190 |
+
elif activation == BalancedDoubleSwish:
|
191 |
+
activation = BalancedDoubleSwish(d_model)
|
192 |
+
self.activation = activation
|
193 |
+
|
194 |
+
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
195 |
+
if layer_norm_cls == IdentityNorm:
|
196 |
+
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
197 |
+
else:
|
198 |
+
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
199 |
+
|
200 |
+
if adaptive_layer_norm:
|
201 |
+
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
202 |
+
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
203 |
+
else:
|
204 |
+
self.norm1 = norm1
|
205 |
+
self.norm2 = norm2
|
206 |
+
|
207 |
+
def __setstate__(self, state):
|
208 |
+
super(TransformerEncoderLayer, self).__setstate__(state)
|
209 |
+
if not hasattr(self, "activation"):
|
210 |
+
self.activation = F.relu
|
211 |
+
|
212 |
+
def forward(
|
213 |
+
self,
|
214 |
+
src: Tensor,
|
215 |
+
src_mask: Optional[Tensor] = None,
|
216 |
+
src_key_padding_mask: Optional[Tensor] = None,
|
217 |
+
cache=None,
|
218 |
+
) -> Tensor:
|
219 |
+
x = src
|
220 |
+
stage_embedding = None
|
221 |
+
x = self.norm1(
|
222 |
+
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
223 |
+
stage_embedding,
|
224 |
+
)
|
225 |
+
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
226 |
+
|
227 |
+
return x
|
228 |
+
|
229 |
+
def _sa_block(
|
230 |
+
self,
|
231 |
+
x: Tensor,
|
232 |
+
attn_mask: Optional[Tensor],
|
233 |
+
key_padding_mask: Optional[Tensor],
|
234 |
+
cache=None,
|
235 |
+
) -> Tensor:
|
236 |
+
x = self.self_attn(
|
237 |
+
x,
|
238 |
+
x,
|
239 |
+
x,
|
240 |
+
attn_mask=attn_mask,
|
241 |
+
key_padding_mask=key_padding_mask,
|
242 |
+
need_weights=False,
|
243 |
+
cache=cache,
|
244 |
+
)
|
245 |
+
return self.dropout1(x)
|
246 |
+
|
247 |
+
def _ff_block(self, x: Tensor) -> Tensor:
|
248 |
+
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
249 |
+
return self.dropout2(x)
|
250 |
+
|
251 |
+
|
252 |
+
class AdaptiveLayerNorm(nn.Module):
|
253 |
+
r"""Adaptive Layer Normalization"""
|
254 |
+
|
255 |
+
def __init__(self, d_model, norm) -> None:
|
256 |
+
super(AdaptiveLayerNorm, self).__init__()
|
257 |
+
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
258 |
+
self.norm = norm
|
259 |
+
self.d_model = d_model
|
260 |
+
self.eps = self.norm.eps
|
261 |
+
|
262 |
+
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
263 |
+
if isinstance(input, tuple):
|
264 |
+
input, embedding = input
|
265 |
+
weight, bias = torch.split(
|
266 |
+
self.project_layer(embedding),
|
267 |
+
split_size_or_sections=self.d_model,
|
268 |
+
dim=-1,
|
269 |
+
)
|
270 |
+
return (weight * self.norm(input) + bias, embedding)
|
271 |
+
|
272 |
+
weight, bias = torch.split(
|
273 |
+
self.project_layer(embedding),
|
274 |
+
split_size_or_sections=self.d_model,
|
275 |
+
dim=-1,
|
276 |
+
)
|
277 |
+
return weight * self.norm(input) + bias
|
278 |
+
|
279 |
+
|
280 |
+
def _get_clones(module, N):
|
281 |
+
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
AR/text_processing/__init__.py
ADDED
File without changes
|
AR/text_processing/phonemizer.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/phonemizer.py
|
2 |
+
# reference: https://github.com/lifeiteng/vall-e
|
3 |
+
import itertools
|
4 |
+
import re
|
5 |
+
from typing import Dict
|
6 |
+
from typing import List
|
7 |
+
|
8 |
+
import regex
|
9 |
+
from gruut import sentences
|
10 |
+
from gruut.const import Sentence
|
11 |
+
from gruut.const import Word
|
12 |
+
from AR.text_processing.symbols import SYMBOL_TO_ID
|
13 |
+
|
14 |
+
|
15 |
+
class GruutPhonemizer:
|
16 |
+
def __init__(self, language: str):
|
17 |
+
self._phonemizer = sentences
|
18 |
+
self.lang = language
|
19 |
+
self.symbol_to_id = SYMBOL_TO_ID
|
20 |
+
self._special_cases_dict: Dict[str] = {
|
21 |
+
r"\.\.\.": "... ",
|
22 |
+
";": "; ",
|
23 |
+
":": ": ",
|
24 |
+
",": ", ",
|
25 |
+
r"\.": ". ",
|
26 |
+
"!": "! ",
|
27 |
+
r"\?": "? ",
|
28 |
+
"—": "—",
|
29 |
+
"…": "… ",
|
30 |
+
"«": "«",
|
31 |
+
"»": "»",
|
32 |
+
}
|
33 |
+
self._punctuation_regexp: str = rf"([{''.join(self._special_cases_dict.keys())}])"
|
34 |
+
|
35 |
+
def _normalize_punctuation(self, text: str) -> str:
|
36 |
+
text = regex.sub(rf"\pZ+{self._punctuation_regexp}", r"\1", text)
|
37 |
+
text = regex.sub(rf"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
|
38 |
+
text = regex.sub(r"\pZ+", r" ", text)
|
39 |
+
return text.strip()
|
40 |
+
|
41 |
+
def _convert_punctuation(self, word: Word) -> str:
|
42 |
+
if not word.phonemes:
|
43 |
+
return ""
|
44 |
+
if word.phonemes[0] in ["‖", "|"]:
|
45 |
+
return word.text.strip()
|
46 |
+
|
47 |
+
phonemes = "".join(word.phonemes)
|
48 |
+
# remove modifier characters ˈˌː with regex
|
49 |
+
phonemes = re.sub(r"[ˈˌː͡]", "", phonemes)
|
50 |
+
return phonemes.strip()
|
51 |
+
|
52 |
+
def phonemize(self, text: str, espeak: bool = False) -> str:
|
53 |
+
text_to_phonemize: str = self._normalize_punctuation(text)
|
54 |
+
sents: List[Sentence] = [sent for sent in self._phonemizer(text_to_phonemize, lang="en-us", espeak=espeak)]
|
55 |
+
words: List[str] = [self._convert_punctuation(word) for word in itertools.chain(*sents)]
|
56 |
+
return " ".join(words)
|
57 |
+
|
58 |
+
def transform(self, phonemes):
|
59 |
+
# convert phonemes to ids
|
60 |
+
# dictionary is in symbols.py
|
61 |
+
return [self.symbol_to_id[p] for p in phonemes if p in self.symbol_to_id.keys()]
|
62 |
+
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
phonemizer = GruutPhonemizer("en-us")
|
66 |
+
# text -> IPA
|
67 |
+
phonemes = phonemizer.phonemize("Hello, wor-ld ?")
|
68 |
+
print("phonemes:", phonemes)
|
69 |
+
print("len(phonemes):", len(phonemes))
|
70 |
+
phoneme_ids = phonemizer.transform(phonemes)
|
71 |
+
print("phoneme_ids:", phoneme_ids)
|
72 |
+
print("len(phoneme_ids):", len(phoneme_ids))
|
AR/text_processing/symbols.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/symbols.py
|
2 |
+
# reference: https://github.com/lifeiteng/vall-e
|
3 |
+
PAD = "_"
|
4 |
+
PUNCTUATION = ';:,.!?¡¿—…"«»“” '
|
5 |
+
LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
6 |
+
IPA_LETTERS = (
|
7 |
+
"ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
8 |
+
)
|
9 |
+
SYMBOLS = [PAD] + list(PUNCTUATION) + list(LETTERS) + list(IPA_LETTERS)
|
10 |
+
SPACE_ID = SYMBOLS.index(" ")
|
11 |
+
SYMBOL_TO_ID = {s: i for i, s in enumerate(SYMBOLS)}
|
12 |
+
ID_TO_SYMBOL = {i: s for i, s in enumerate(SYMBOLS)}
|
AR/utils/__init__.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
|
4 |
+
def str2bool(str):
|
5 |
+
return True if str.lower() == "true" else False
|
6 |
+
|
7 |
+
|
8 |
+
def get_newest_ckpt(string_list):
|
9 |
+
# 定义一个正则表达式模式,用于匹配字符串中的数字
|
10 |
+
pattern = r"epoch=(\d+)-step=(\d+)\.ckpt"
|
11 |
+
|
12 |
+
# 使用正则表达式提取每个字符串中的数字信息,并创建一个包含元组的列表
|
13 |
+
extracted_info = []
|
14 |
+
for string in string_list:
|
15 |
+
match = re.match(pattern, string)
|
16 |
+
if match:
|
17 |
+
epoch = int(match.group(1))
|
18 |
+
step = int(match.group(2))
|
19 |
+
extracted_info.append((epoch, step, string))
|
20 |
+
# 按照 epoch 后面的数字和 step 后面的数字进行排序
|
21 |
+
sorted_info = sorted(extracted_info, key=lambda x: (x[0], x[1]), reverse=True)
|
22 |
+
# 获取最新的 ckpt 文件名
|
23 |
+
newest_ckpt = sorted_info[0][2]
|
24 |
+
return newest_ckpt
|
25 |
+
|
26 |
+
|
27 |
+
# 文本存在且不为空时 return True
|
28 |
+
def check_txt_file(file_path):
|
29 |
+
try:
|
30 |
+
with open(file_path, "r") as file:
|
31 |
+
text = file.readline().strip()
|
32 |
+
assert text.strip() != ""
|
33 |
+
return text
|
34 |
+
except Exception:
|
35 |
+
return False
|
36 |
+
return False
|
AR/utils/initialize.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""Initialize modules for espnet2 neural networks."""
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from typeguard import check_argument_types
|
6 |
+
|
7 |
+
|
8 |
+
def initialize(model: torch.nn.Module, init: str):
|
9 |
+
"""Initialize weights of a neural network module.
|
10 |
+
|
11 |
+
Parameters are initialized using the given method or distribution.
|
12 |
+
|
13 |
+
Custom initialization routines can be implemented into submodules
|
14 |
+
as function `espnet_initialization_fn` within the custom module.
|
15 |
+
|
16 |
+
Args:
|
17 |
+
model: Target.
|
18 |
+
init: Method of initialization.
|
19 |
+
"""
|
20 |
+
assert check_argument_types()
|
21 |
+
print("init with", init)
|
22 |
+
|
23 |
+
# weight init
|
24 |
+
for p in model.parameters():
|
25 |
+
if p.dim() > 1:
|
26 |
+
if init == "xavier_uniform":
|
27 |
+
torch.nn.init.xavier_uniform_(p.data)
|
28 |
+
elif init == "xavier_normal":
|
29 |
+
torch.nn.init.xavier_normal_(p.data)
|
30 |
+
elif init == "kaiming_uniform":
|
31 |
+
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
|
32 |
+
elif init == "kaiming_normal":
|
33 |
+
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
|
34 |
+
else:
|
35 |
+
raise ValueError("Unknown initialization: " + init)
|
36 |
+
# bias init
|
37 |
+
for name, p in model.named_parameters():
|
38 |
+
if ".bias" in name and p.dim() == 1:
|
39 |
+
p.data.zero_()
|
AR/utils/io.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import yaml
|
5 |
+
|
6 |
+
|
7 |
+
def load_yaml_config(path):
|
8 |
+
with open(path) as f:
|
9 |
+
config = yaml.full_load(f)
|
10 |
+
return config
|
11 |
+
|
12 |
+
|
13 |
+
def save_config_to_yaml(config, path):
|
14 |
+
assert path.endswith(".yaml")
|
15 |
+
with open(path, "w") as f:
|
16 |
+
f.write(yaml.dump(config))
|
17 |
+
f.close()
|
18 |
+
|
19 |
+
|
20 |
+
def write_args(args, path):
|
21 |
+
args_dict = dict((name, getattr(args, name)) for name in dir(args) if not name.startswith("_"))
|
22 |
+
with open(path, "a") as args_file:
|
23 |
+
args_file.write("==> torch version: {}\n".format(torch.__version__))
|
24 |
+
args_file.write("==> cudnn version: {}\n".format(torch.backends.cudnn.version()))
|
25 |
+
args_file.write("==> Cmd:\n")
|
26 |
+
args_file.write(str(sys.argv))
|
27 |
+
args_file.write("\n==> args:\n")
|
28 |
+
for k, v in sorted(args_dict.items()):
|
29 |
+
args_file.write(" %s: %s\n" % (str(k), str(v)))
|
30 |
+
args_file.close()
|
BigVGAN/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 NVIDIA CORPORATION.
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
BigVGAN/README.md
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## BigVGAN: A Universal Neural Vocoder with Large-Scale Training
|
2 |
+
|
3 |
+
#### Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, Sungroh Yoon
|
4 |
+
|
5 |
+
[[Paper]](https://arxiv.org/abs/2206.04658) - [[Code]](https://github.com/NVIDIA/BigVGAN) - [[Showcase]](https://bigvgan-demo.github.io/) - [[Project Page]](https://research.nvidia.com/labs/adlr/projects/bigvgan/) - [[Weights]](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a) - [[Demo]](https://huggingface.co/spaces/nvidia/BigVGAN)
|
6 |
+
|
7 |
+
[](https://paperswithcode.com/sota/speech-synthesis-on-libritts?p=bigvgan-a-universal-neural-vocoder-with-large)
|
8 |
+
|
9 |
+
<center><img src="https://user-images.githubusercontent.com/15963413/218609148-881e39df-33af-4af9-ab95-1427c4ebf062.png" width="800"></center>
|
10 |
+
|
11 |
+
## News
|
12 |
+
- **Sep 2024 (v2.4):**
|
13 |
+
- We have updated the pretrained checkpoints trained for 5M steps. This is final release of the BigVGAN-v2 checkpoints.
|
14 |
+
|
15 |
+
- **Jul 2024 (v2.3):**
|
16 |
+
- General refactor and code improvements for improved readability.
|
17 |
+
- Fully fused CUDA kernel of anti-alised activation (upsampling + activation + downsampling) with inference speed benchmark.
|
18 |
+
|
19 |
+
- **Jul 2024 (v2.2):** The repository now includes an interactive local demo using gradio.
|
20 |
+
|
21 |
+
- **Jul 2024 (v2.1):** BigVGAN is now integrated with 🤗 Hugging Face Hub with easy access to inference using pretrained checkpoints. We also provide an interactive demo on Hugging Face Spaces.
|
22 |
+
|
23 |
+
- **Jul 2024 (v2):** We release BigVGAN-v2 along with pretrained checkpoints. Below are the highlights:
|
24 |
+
- Custom CUDA kernel for inference: we provide a fused upsampling + activation kernel written in CUDA for accelerated inference speed. Our test shows 1.5 - 3x faster speed on a single A100 GPU.
|
25 |
+
- Improved discriminator and loss: BigVGAN-v2 is trained using a [multi-scale sub-band CQT discriminator](https://arxiv.org/abs/2311.14957) and a [multi-scale mel spectrogram loss](https://arxiv.org/abs/2306.06546).
|
26 |
+
- Larger training data: BigVGAN-v2 is trained using datasets containing diverse audio types, including speech in multiple languages, environmental sounds, and instruments.
|
27 |
+
- We provide pretrained checkpoints of BigVGAN-v2 using diverse audio configurations, supporting up to 44 kHz sampling rate and 512x upsampling ratio.
|
28 |
+
|
29 |
+
## Installation
|
30 |
+
|
31 |
+
The codebase has been tested on Python `3.10` and PyTorch `2.3.1` conda packages with either `pytorch-cuda=12.1` or `pytorch-cuda=11.8`. Below is an example command to create the conda environment:
|
32 |
+
|
33 |
+
```shell
|
34 |
+
conda create -n bigvgan python=3.10 pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
|
35 |
+
conda activate bigvgan
|
36 |
+
```
|
37 |
+
|
38 |
+
Clone the repository and install dependencies:
|
39 |
+
|
40 |
+
```shell
|
41 |
+
git clone https://github.com/NVIDIA/BigVGAN
|
42 |
+
cd BigVGAN
|
43 |
+
pip install -r requirements.txt
|
44 |
+
```
|
45 |
+
|
46 |
+
## Inference Quickstart using 🤗 Hugging Face Hub
|
47 |
+
|
48 |
+
Below example describes how you can use BigVGAN: load the pretrained BigVGAN generator from Hugging Face Hub, compute mel spectrogram from input waveform, and generate synthesized waveform using the mel spectrogram as the model's input.
|
49 |
+
|
50 |
+
```python
|
51 |
+
device = 'cuda'
|
52 |
+
|
53 |
+
import torch
|
54 |
+
import bigvgan
|
55 |
+
import librosa
|
56 |
+
from meldataset import get_mel_spectrogram
|
57 |
+
|
58 |
+
# instantiate the model. You can optionally set use_cuda_kernel=True for faster inference.
|
59 |
+
model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_24khz_100band_256x', use_cuda_kernel=False)
|
60 |
+
|
61 |
+
# remove weight norm in the model and set to eval mode
|
62 |
+
model.remove_weight_norm()
|
63 |
+
model = model.eval().to(device)
|
64 |
+
|
65 |
+
# load wav file and compute mel spectrogram
|
66 |
+
wav_path = '/path/to/your/audio.wav'
|
67 |
+
wav, sr = librosa.load(wav_path, sr=model.h.sampling_rate, mono=True) # wav is np.ndarray with shape [T_time] and values in [-1, 1]
|
68 |
+
wav = torch.FloatTensor(wav).unsqueeze(0) # wav is FloatTensor with shape [B(1), T_time]
|
69 |
+
|
70 |
+
# compute mel spectrogram from the ground truth audio
|
71 |
+
mel = get_mel_spectrogram(wav, model.h).to(device) # mel is FloatTensor with shape [B(1), C_mel, T_frame]
|
72 |
+
|
73 |
+
# generate waveform from mel
|
74 |
+
with torch.inference_mode():
|
75 |
+
wav_gen = model(mel) # wav_gen is FloatTensor with shape [B(1), 1, T_time] and values in [-1, 1]
|
76 |
+
wav_gen_float = wav_gen.squeeze(0).cpu() # wav_gen is FloatTensor with shape [1, T_time]
|
77 |
+
|
78 |
+
# you can convert the generated waveform to 16 bit linear PCM
|
79 |
+
wav_gen_int16 = (wav_gen_float * 32767.0).numpy().astype('int16') # wav_gen is now np.ndarray with shape [1, T_time] and int16 dtype
|
80 |
+
```
|
81 |
+
|
82 |
+
## Local gradio demo <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>
|
83 |
+
|
84 |
+
You can run a local gradio demo using below command:
|
85 |
+
|
86 |
+
```python
|
87 |
+
pip install -r demo/requirements.txt
|
88 |
+
python demo/app.py
|
89 |
+
```
|
90 |
+
|
91 |
+
## Training
|
92 |
+
|
93 |
+
Create symbolic link to the root of the dataset. The codebase uses filelist with the relative path from the dataset. Below are the example commands for LibriTTS dataset:
|
94 |
+
|
95 |
+
```shell
|
96 |
+
cd filelists/LibriTTS && \
|
97 |
+
ln -s /path/to/your/LibriTTS/train-clean-100 train-clean-100 && \
|
98 |
+
ln -s /path/to/your/LibriTTS/train-clean-360 train-clean-360 && \
|
99 |
+
ln -s /path/to/your/LibriTTS/train-other-500 train-other-500 && \
|
100 |
+
ln -s /path/to/your/LibriTTS/dev-clean dev-clean && \
|
101 |
+
ln -s /path/to/your/LibriTTS/dev-other dev-other && \
|
102 |
+
ln -s /path/to/your/LibriTTS/test-clean test-clean && \
|
103 |
+
ln -s /path/to/your/LibriTTS/test-other test-other && \
|
104 |
+
cd ../..
|
105 |
+
```
|
106 |
+
|
107 |
+
Train BigVGAN model. Below is an example command for training BigVGAN-v2 using LibriTTS dataset at 24kHz with a full 100-band mel spectrogram as input:
|
108 |
+
|
109 |
+
```shell
|
110 |
+
python train.py \
|
111 |
+
--config configs/bigvgan_v2_24khz_100band_256x.json \
|
112 |
+
--input_wavs_dir filelists/LibriTTS \
|
113 |
+
--input_training_file filelists/LibriTTS/train-full.txt \
|
114 |
+
--input_validation_file filelists/LibriTTS/val-full.txt \
|
115 |
+
--list_input_unseen_wavs_dir filelists/LibriTTS filelists/LibriTTS \
|
116 |
+
--list_input_unseen_validation_file filelists/LibriTTS/dev-clean.txt filelists/LibriTTS/dev-other.txt \
|
117 |
+
--checkpoint_path exp/bigvgan_v2_24khz_100band_256x
|
118 |
+
```
|
119 |
+
|
120 |
+
## Synthesis
|
121 |
+
|
122 |
+
Synthesize from BigVGAN model. Below is an example command for generating audio from the model.
|
123 |
+
It computes mel spectrograms using wav files from `--input_wavs_dir` and saves the generated audio to `--output_dir`.
|
124 |
+
|
125 |
+
```shell
|
126 |
+
python inference.py \
|
127 |
+
--checkpoint_file /path/to/your/bigvgan_v2_24khz_100band_256x/bigvgan_generator.pt \
|
128 |
+
--input_wavs_dir /path/to/your/input_wav \
|
129 |
+
--output_dir /path/to/your/output_wav
|
130 |
+
```
|
131 |
+
|
132 |
+
`inference_e2e.py` supports synthesis directly from the mel spectrogram saved in `.npy` format, with shapes `[1, channel, frame]` or `[channel, frame]`.
|
133 |
+
It loads mel spectrograms from `--input_mels_dir` and saves the generated audio to `--output_dir`.
|
134 |
+
|
135 |
+
Make sure that the STFT hyperparameters for mel spectrogram are the same as the model, which are defined in `config.json` of the corresponding model.
|
136 |
+
|
137 |
+
```shell
|
138 |
+
python inference_e2e.py \
|
139 |
+
--checkpoint_file /path/to/your/bigvgan_v2_24khz_100band_256x/bigvgan_generator.pt \
|
140 |
+
--input_mels_dir /path/to/your/input_mel \
|
141 |
+
--output_dir /path/to/your/output_wav
|
142 |
+
```
|
143 |
+
|
144 |
+
## Using Custom CUDA Kernel for Synthesis
|
145 |
+
|
146 |
+
You can apply the fast CUDA inference kernel by using a parameter `use_cuda_kernel` when instantiating BigVGAN:
|
147 |
+
|
148 |
+
```python
|
149 |
+
generator = BigVGAN(h, use_cuda_kernel=True)
|
150 |
+
```
|
151 |
+
|
152 |
+
You can also pass `--use_cuda_kernel` to `inference.py` and `inference_e2e.py` to enable this feature.
|
153 |
+
|
154 |
+
When applied for the first time, it builds the kernel using `nvcc` and `ninja`. If the build succeeds, the kernel is saved to `alias_free_activation/cuda/build` and the model automatically loads the kernel. The codebase has been tested using CUDA `12.1`.
|
155 |
+
|
156 |
+
Please make sure that both are installed in your system and `nvcc` installed in your system matches the version your PyTorch build is using.
|
157 |
+
|
158 |
+
We recommend running `test_cuda_vs_torch_model.py` first to build and check the correctness of the CUDA kernel. See below example command and its output, where it returns `[Success] test CUDA fused vs. plain torch BigVGAN inference`:
|
159 |
+
|
160 |
+
```python
|
161 |
+
python tests/test_cuda_vs_torch_model.py \
|
162 |
+
--checkpoint_file /path/to/your/bigvgan_generator.pt
|
163 |
+
```
|
164 |
+
|
165 |
+
```shell
|
166 |
+
loading plain Pytorch BigVGAN
|
167 |
+
...
|
168 |
+
loading CUDA kernel BigVGAN with auto-build
|
169 |
+
Detected CUDA files, patching ldflags
|
170 |
+
Emitting ninja build file /path/to/your/BigVGAN/alias_free_activation/cuda/build/build.ninja..
|
171 |
+
Building extension module anti_alias_activation_cuda...
|
172 |
+
...
|
173 |
+
Loading extension module anti_alias_activation_cuda...
|
174 |
+
...
|
175 |
+
Loading '/path/to/your/bigvgan_generator.pt'
|
176 |
+
...
|
177 |
+
[Success] test CUDA fused vs. plain torch BigVGAN inference
|
178 |
+
> mean_difference=0.0007238413265440613
|
179 |
+
...
|
180 |
+
```
|
181 |
+
|
182 |
+
If you see `[Fail] test CUDA fused vs. plain torch BigVGAN inference`, it means that the CUDA kernel inference is incorrect. Please check if `nvcc` installed in your system is compatible with your PyTorch version.
|
183 |
+
|
184 |
+
## Pretrained Models
|
185 |
+
|
186 |
+
We provide the [pretrained models on Hugging Face Collections](https://huggingface.co/collections/nvidia/bigvgan-66959df3d97fd7d98d97dc9a).
|
187 |
+
One can download the checkpoints of the generator weight (named `bigvgan_generator.pt`) and its discriminator/optimizer states (named `bigvgan_discriminator_optimizer.pt`) within the listed model repositories.
|
188 |
+
|
189 |
+
| Model Name | Sampling Rate | Mel band | fmax | Upsampling Ratio | Params | Dataset | Steps | Fine-Tuned |
|
190 |
+
|:--------------------------------------------------------------------------------------------------------:|:-------------:|:--------:|:-----:|:----------------:|:------:|:--------------------------:|:-----:|:----------:|
|
191 |
+
| [bigvgan_v2_44khz_128band_512x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_512x) | 44 kHz | 128 | 22050 | 512 | 122M | Large-scale Compilation | 5M | No |
|
192 |
+
| [bigvgan_v2_44khz_128band_256x](https://huggingface.co/nvidia/bigvgan_v2_44khz_128band_256x) | 44 kHz | 128 | 22050 | 256 | 112M | Large-scale Compilation | 5M | No |
|
193 |
+
| [bigvgan_v2_24khz_100band_256x](https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x) | 24 kHz | 100 | 12000 | 256 | 112M | Large-scale Compilation | 5M | No |
|
194 |
+
| [bigvgan_v2_22khz_80band_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_256x) | 22 kHz | 80 | 11025 | 256 | 112M | Large-scale Compilation | 5M | No |
|
195 |
+
| [bigvgan_v2_22khz_80band_fmax8k_256x](https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_fmax8k_256x) | 22 kHz | 80 | 8000 | 256 | 112M | Large-scale Compilation | 5M | No |
|
196 |
+
| [bigvgan_24khz_100band](https://huggingface.co/nvidia/bigvgan_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 112M | LibriTTS | 5M | No |
|
197 |
+
| [bigvgan_base_24khz_100band](https://huggingface.co/nvidia/bigvgan_base_24khz_100band) | 24 kHz | 100 | 12000 | 256 | 14M | LibriTTS | 5M | No |
|
198 |
+
| [bigvgan_22khz_80band](https://huggingface.co/nvidia/bigvgan_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 112M | LibriTTS + VCTK + LJSpeech | 5M | No |
|
199 |
+
| [bigvgan_base_22khz_80band](https://huggingface.co/nvidia/bigvgan_base_22khz_80band) | 22 kHz | 80 | 8000 | 256 | 14M | LibriTTS + VCTK + LJSpeech | 5M | No |
|
200 |
+
|
201 |
+
The paper results are based on the original 24kHz BigVGAN models (`bigvgan_24khz_100band` and `bigvgan_base_24khz_100band`) trained on LibriTTS dataset.
|
202 |
+
We also provide 22kHz BigVGAN models with band-limited setup (i.e., fmax=8000) for TTS applications.
|
203 |
+
Note that the checkpoints use `snakebeta` activation with log scale parameterization, which have the best overall quality.
|
204 |
+
|
205 |
+
You can fine-tune the models by:
|
206 |
+
|
207 |
+
1. downloading the checkpoints (both the generator weight and its discriminator/optimizer states)
|
208 |
+
2. resuming training using your audio dataset by specifying `--checkpoint_path` that includes the checkpoints when launching `train.py`
|
209 |
+
|
210 |
+
## Training Details of BigVGAN-v2
|
211 |
+
|
212 |
+
Comapred to the original BigVGAN, the pretrained checkpoints of BigVGAN-v2 used `batch_size=32` with a longer `segment_size=65536` and are trained using 8 A100 GPUs.
|
213 |
+
|
214 |
+
Note that the BigVGAN-v2 `json` config files in `./configs` use `batch_size=4` as default to fit in a single A100 GPU for training. You can fine-tune the models adjusting `batch_size` depending on your GPUs.
|
215 |
+
|
216 |
+
When training BigVGAN-v2 from scratch with small batch size, it can potentially encounter the early divergence problem mentioned in the paper. In such case, we recommend lowering the `clip_grad_norm` value (e.g. `100`) for the early training iterations (e.g. 20000 steps) and increase the value to the default `500`.
|
217 |
+
|
218 |
+
## Evaluation Results of BigVGAN-v2
|
219 |
+
|
220 |
+
Below are the objective results of the 24kHz model (`bigvgan_v2_24khz_100band_256x`) obtained from the LibriTTS `dev` sets. BigVGAN-v2 shows noticeable improvements of the metrics. The model also exhibits reduced perceptual artifacts, especially for non-speech audio.
|
221 |
+
|
222 |
+
| Model | Dataset | Steps | PESQ(↑) | M-STFT(↓) | MCD(↓) | Periodicity(↓) | V/UV F1(↑) |
|
223 |
+
|:----------:|:-----------------------:|:-----:|:---------:|:----------:|:----------:|:--------------:|:----------:|
|
224 |
+
| BigVGAN | LibriTTS | 1M | 4.027 | 0.7997 | 0.3745 | 0.1018 | 0.9598 |
|
225 |
+
| BigVGAN | LibriTTS | 5M | 4.256 | 0.7409 | 0.2988 | 0.0809 | 0.9698 |
|
226 |
+
| BigVGAN-v2 | Large-scale Compilation | 3M | 4.359 | 0.7134 | 0.3060 | 0.0621 | 0.9777 |
|
227 |
+
| BigVGAN-v2 | Large-scale Compilation | 5M | **4.362** | **0.7026** | **0.2903** | **0.0593** | **0.9793** |
|
228 |
+
|
229 |
+
## Speed Benchmark
|
230 |
+
|
231 |
+
Below are the speed and VRAM usage benchmark results of BigVGAN from `tests/test_cuda_vs_torch_model.py`, using `bigvgan_v2_24khz_100band_256x` as a reference model.
|
232 |
+
|
233 |
+
| GPU | num_mel_frame | use_cuda_kernel | Speed (kHz) | Real-time Factor | VRAM (GB) |
|
234 |
+
|:--------------------------:|:-------------:|:---------------:|:-----------:|:----------------:|:---------:|
|
235 |
+
| NVIDIA A100 | 256 | False | 1672.1 | 69.7x | 1.3 |
|
236 |
+
| | | True | 3916.5 | 163.2x | 1.3 |
|
237 |
+
| | 2048 | False | 1899.6 | 79.2x | 1.7 |
|
238 |
+
| | | True | 5330.1 | 222.1x | 1.7 |
|
239 |
+
| | 16384 | False | 1973.8 | 82.2x | 5.0 |
|
240 |
+
| | | True | 5761.7 | 240.1x | 4.4 |
|
241 |
+
| NVIDIA GeForce RTX 3080 | 256 | False | 841.1 | 35.0x | 1.3 |
|
242 |
+
| | | True | 1598.1 | 66.6x | 1.3 |
|
243 |
+
| | 2048 | False | 929.9 | 38.7x | 1.7 |
|
244 |
+
| | | True | 1971.3 | 82.1x | 1.6 |
|
245 |
+
| | 16384 | False | 943.4 | 39.3x | 5.0 |
|
246 |
+
| | | True | 2026.5 | 84.4x | 3.9 |
|
247 |
+
| NVIDIA GeForce RTX 2080 Ti | 256 | False | 515.6 | 21.5x | 1.3 |
|
248 |
+
| | | True | 811.3 | 33.8x | 1.3 |
|
249 |
+
| | 2048 | False | 576.5 | 24.0x | 1.7 |
|
250 |
+
| | | True | 1023.0 | 42.6x | 1.5 |
|
251 |
+
| | 16384 | False | 589.4 | 24.6x | 5.0 |
|
252 |
+
| | | True | 1068.1 | 44.5x | 3.2 |
|
253 |
+
|
254 |
+
## Acknowledgements
|
255 |
+
|
256 |
+
We thank Vijay Anand Korthikanti and Kevin J. Shih for their generous support in implementing the CUDA kernel for inference.
|
257 |
+
|
258 |
+
## References
|
259 |
+
|
260 |
+
- [HiFi-GAN](https://github.com/jik876/hifi-gan) (for generator and multi-period discriminator)
|
261 |
+
- [Snake](https://github.com/EdwardDixon/snake) (for periodic activation)
|
262 |
+
- [Alias-free-torch](https://github.com/junjun3518/alias-free-torch) (for anti-aliasing)
|
263 |
+
- [Julius](https://github.com/adefossez/julius) (for low-pass filter)
|
264 |
+
- [UnivNet](https://github.com/mindslab-ai/univnet) (for multi-resolution discriminator)
|
265 |
+
- [descript-audio-codec](https://github.com/descriptinc/descript-audio-codec) and [vocos](https://github.com/gemelo-ai/vocos) (for multi-band multi-scale STFT discriminator and multi-scale mel spectrogram loss)
|
266 |
+
- [Amphion](https://github.com/open-mmlab/Amphion) (for multi-scale sub-band CQT discriminator)
|
BigVGAN/activations.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Implementation adapted from https://github.com/EdwardDixon/snake under the MIT license.
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn, sin, pow
|
6 |
+
from torch.nn import Parameter
|
7 |
+
|
8 |
+
|
9 |
+
class Snake(nn.Module):
|
10 |
+
"""
|
11 |
+
Implementation of a sine-based periodic activation function
|
12 |
+
Shape:
|
13 |
+
- Input: (B, C, T)
|
14 |
+
- Output: (B, C, T), same shape as the input
|
15 |
+
Parameters:
|
16 |
+
- alpha - trainable parameter
|
17 |
+
References:
|
18 |
+
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
19 |
+
https://arxiv.org/abs/2006.08195
|
20 |
+
Examples:
|
21 |
+
>>> a1 = snake(256)
|
22 |
+
>>> x = torch.randn(256)
|
23 |
+
>>> x = a1(x)
|
24 |
+
"""
|
25 |
+
|
26 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
27 |
+
"""
|
28 |
+
Initialization.
|
29 |
+
INPUT:
|
30 |
+
- in_features: shape of the input
|
31 |
+
- alpha: trainable parameter
|
32 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
33 |
+
alpha will be trained along with the rest of your model.
|
34 |
+
"""
|
35 |
+
super(Snake, self).__init__()
|
36 |
+
self.in_features = in_features
|
37 |
+
|
38 |
+
# Initialize alpha
|
39 |
+
self.alpha_logscale = alpha_logscale
|
40 |
+
if self.alpha_logscale: # Log scale alphas initialized to zeros
|
41 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
42 |
+
else: # Linear scale alphas initialized to ones
|
43 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
44 |
+
|
45 |
+
self.alpha.requires_grad = alpha_trainable
|
46 |
+
|
47 |
+
self.no_div_by_zero = 0.000000001
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
"""
|
51 |
+
Forward pass of the function.
|
52 |
+
Applies the function to the input elementwise.
|
53 |
+
Snake ∶= x + 1/a * sin^2 (xa)
|
54 |
+
"""
|
55 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T]
|
56 |
+
if self.alpha_logscale:
|
57 |
+
alpha = torch.exp(alpha)
|
58 |
+
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
59 |
+
|
60 |
+
return x
|
61 |
+
|
62 |
+
|
63 |
+
class SnakeBeta(nn.Module):
|
64 |
+
"""
|
65 |
+
A modified Snake function which uses separate parameters for the magnitude of the periodic components
|
66 |
+
Shape:
|
67 |
+
- Input: (B, C, T)
|
68 |
+
- Output: (B, C, T), same shape as the input
|
69 |
+
Parameters:
|
70 |
+
- alpha - trainable parameter that controls frequency
|
71 |
+
- beta - trainable parameter that controls magnitude
|
72 |
+
References:
|
73 |
+
- This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda:
|
74 |
+
https://arxiv.org/abs/2006.08195
|
75 |
+
Examples:
|
76 |
+
>>> a1 = snakebeta(256)
|
77 |
+
>>> x = torch.randn(256)
|
78 |
+
>>> x = a1(x)
|
79 |
+
"""
|
80 |
+
|
81 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False):
|
82 |
+
"""
|
83 |
+
Initialization.
|
84 |
+
INPUT:
|
85 |
+
- in_features: shape of the input
|
86 |
+
- alpha - trainable parameter that controls frequency
|
87 |
+
- beta - trainable parameter that controls magnitude
|
88 |
+
alpha is initialized to 1 by default, higher values = higher-frequency.
|
89 |
+
beta is initialized to 1 by default, higher values = higher-magnitude.
|
90 |
+
alpha will be trained along with the rest of your model.
|
91 |
+
"""
|
92 |
+
super(SnakeBeta, self).__init__()
|
93 |
+
self.in_features = in_features
|
94 |
+
|
95 |
+
# Initialize alpha
|
96 |
+
self.alpha_logscale = alpha_logscale
|
97 |
+
if self.alpha_logscale: # Log scale alphas initialized to zeros
|
98 |
+
self.alpha = Parameter(torch.zeros(in_features) * alpha)
|
99 |
+
self.beta = Parameter(torch.zeros(in_features) * alpha)
|
100 |
+
else: # Linear scale alphas initialized to ones
|
101 |
+
self.alpha = Parameter(torch.ones(in_features) * alpha)
|
102 |
+
self.beta = Parameter(torch.ones(in_features) * alpha)
|
103 |
+
|
104 |
+
self.alpha.requires_grad = alpha_trainable
|
105 |
+
self.beta.requires_grad = alpha_trainable
|
106 |
+
|
107 |
+
self.no_div_by_zero = 0.000000001
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
"""
|
111 |
+
Forward pass of the function.
|
112 |
+
Applies the function to the input elementwise.
|
113 |
+
SnakeBeta ∶= x + 1/b * sin^2 (xa)
|
114 |
+
"""
|
115 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # Line up with x to [B, C, T]
|
116 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
117 |
+
if self.alpha_logscale:
|
118 |
+
alpha = torch.exp(alpha)
|
119 |
+
beta = torch.exp(beta)
|
120 |
+
x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2)
|
121 |
+
|
122 |
+
return x
|
BigVGAN/alias_free_activation/cuda/__init__.py
ADDED
File without changes
|
BigVGAN/alias_free_activation/cuda/activation1d.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
from alias_free_activation.torch.resample import UpSample1d, DownSample1d
|
7 |
+
|
8 |
+
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
|
9 |
+
from alias_free_activation.cuda import load
|
10 |
+
|
11 |
+
anti_alias_activation_cuda = load.load()
|
12 |
+
|
13 |
+
|
14 |
+
class FusedAntiAliasActivation(torch.autograd.Function):
|
15 |
+
"""
|
16 |
+
Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
|
17 |
+
The hyperparameters are hard-coded in the kernel to maximize speed.
|
18 |
+
NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
|
19 |
+
"""
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
|
23 |
+
activation_results = anti_alias_activation_cuda.forward(inputs, up_ftr, down_ftr, alpha, beta)
|
24 |
+
|
25 |
+
return activation_results
|
26 |
+
|
27 |
+
@staticmethod
|
28 |
+
def backward(ctx, output_grads):
|
29 |
+
raise NotImplementedError
|
30 |
+
return output_grads, None, None
|
31 |
+
|
32 |
+
|
33 |
+
class Activation1d(nn.Module):
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
activation,
|
37 |
+
up_ratio: int = 2,
|
38 |
+
down_ratio: int = 2,
|
39 |
+
up_kernel_size: int = 12,
|
40 |
+
down_kernel_size: int = 12,
|
41 |
+
fused: bool = True,
|
42 |
+
):
|
43 |
+
super().__init__()
|
44 |
+
self.up_ratio = up_ratio
|
45 |
+
self.down_ratio = down_ratio
|
46 |
+
self.act = activation
|
47 |
+
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
48 |
+
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
49 |
+
|
50 |
+
self.fused = fused # Whether to use fused CUDA kernel or not
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
if not self.fused:
|
54 |
+
x = self.upsample(x)
|
55 |
+
x = self.act(x)
|
56 |
+
x = self.downsample(x)
|
57 |
+
return x
|
58 |
+
else:
|
59 |
+
if self.act.__class__.__name__ == "Snake":
|
60 |
+
beta = self.act.alpha.data # Snake uses same params for alpha and beta
|
61 |
+
else:
|
62 |
+
beta = self.act.beta.data # Snakebeta uses different params for alpha and beta
|
63 |
+
alpha = self.act.alpha.data
|
64 |
+
if not self.act.alpha_logscale: # Exp baked into cuda kernel, cancel it out with a log
|
65 |
+
alpha = torch.log(alpha)
|
66 |
+
beta = torch.log(beta)
|
67 |
+
|
68 |
+
x = FusedAntiAliasActivation.apply(x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta)
|
69 |
+
return x
|
BigVGAN/alias_free_activation/cuda/anti_alias_activation.cpp
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <torch/extension.h>
|
18 |
+
|
19 |
+
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta);
|
20 |
+
|
21 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
22 |
+
m.def("forward", &fwd_cuda, "Anti-Alias Activation forward (CUDA)");
|
23 |
+
}
|
BigVGAN/alias_free_activation/cuda/anti_alias_activation_cuda.cu
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <ATen/ATen.h>
|
18 |
+
#include <cuda.h>
|
19 |
+
#include <cuda_runtime.h>
|
20 |
+
#include <cuda_fp16.h>
|
21 |
+
#include <cuda_profiler_api.h>
|
22 |
+
#include <ATen/cuda/CUDAContext.h>
|
23 |
+
#include <torch/extension.h>
|
24 |
+
#include "type_shim.h"
|
25 |
+
#include <assert.h>
|
26 |
+
#include <cfloat>
|
27 |
+
#include <limits>
|
28 |
+
#include <stdint.h>
|
29 |
+
#include <c10/macros/Macros.h>
|
30 |
+
|
31 |
+
namespace
|
32 |
+
{
|
33 |
+
// Hard-coded hyperparameters
|
34 |
+
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
|
35 |
+
constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
|
36 |
+
constexpr int BUFFER_SIZE = 32;
|
37 |
+
constexpr int FILTER_SIZE = 12;
|
38 |
+
constexpr int HALF_FILTER_SIZE = 6;
|
39 |
+
constexpr int UPSAMPLE_REPLICATION_PAD = 5; // 5 on each side, matching torch impl
|
40 |
+
constexpr int DOWNSAMPLE_REPLICATION_PAD_LEFT = 5; // matching torch impl
|
41 |
+
constexpr int DOWNSAMPLE_REPLICATION_PAD_RIGHT = 6; // matching torch impl
|
42 |
+
|
43 |
+
template <typename input_t, typename output_t, typename acc_t>
|
44 |
+
__global__ void anti_alias_activation_forward(
|
45 |
+
output_t *dst,
|
46 |
+
const input_t *src,
|
47 |
+
const input_t *up_ftr,
|
48 |
+
const input_t *down_ftr,
|
49 |
+
const input_t *alpha,
|
50 |
+
const input_t *beta,
|
51 |
+
int batch_size,
|
52 |
+
int channels,
|
53 |
+
int seq_len)
|
54 |
+
{
|
55 |
+
// Up and downsample filters
|
56 |
+
input_t up_filter[FILTER_SIZE];
|
57 |
+
input_t down_filter[FILTER_SIZE];
|
58 |
+
|
59 |
+
// Load data from global memory including extra indices reserved for replication paddings
|
60 |
+
input_t elements[2 * FILTER_SIZE + 2 * BUFFER_SIZE + 2 * UPSAMPLE_REPLICATION_PAD] = {0};
|
61 |
+
input_t intermediates[2 * FILTER_SIZE + 2 * BUFFER_SIZE + DOWNSAMPLE_REPLICATION_PAD_LEFT + DOWNSAMPLE_REPLICATION_PAD_RIGHT] = {0};
|
62 |
+
|
63 |
+
// Output stores downsampled output before writing to dst
|
64 |
+
output_t output[BUFFER_SIZE];
|
65 |
+
|
66 |
+
// blockDim/threadIdx = (128, 1, 1)
|
67 |
+
// gridDim/blockIdx = (seq_blocks, channels, batches)
|
68 |
+
int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
69 |
+
int local_offset = threadIdx.x * BUFFER_SIZE;
|
70 |
+
int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;
|
71 |
+
|
72 |
+
// intermediate have double the seq_len
|
73 |
+
int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
|
74 |
+
int intermediate_seq_offset = blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_local_offset;
|
75 |
+
|
76 |
+
// Get values needed for replication padding before moving pointer
|
77 |
+
const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
|
78 |
+
input_t seq_left_most_value = right_most_pntr[0];
|
79 |
+
input_t seq_right_most_value = right_most_pntr[seq_len - 1];
|
80 |
+
|
81 |
+
// Move src and dst pointers
|
82 |
+
src += block_offset + local_offset;
|
83 |
+
dst += block_offset + local_offset;
|
84 |
+
|
85 |
+
// Alpha and beta values for snake activatons. Applies exp by default
|
86 |
+
alpha = alpha + blockIdx.y;
|
87 |
+
input_t alpha_val = expf(alpha[0]);
|
88 |
+
beta = beta + blockIdx.y;
|
89 |
+
input_t beta_val = expf(beta[0]);
|
90 |
+
|
91 |
+
#pragma unroll
|
92 |
+
for (int it = 0; it < FILTER_SIZE; it += 1)
|
93 |
+
{
|
94 |
+
up_filter[it] = up_ftr[it];
|
95 |
+
down_filter[it] = down_ftr[it];
|
96 |
+
}
|
97 |
+
|
98 |
+
// Apply replication padding for upsampling, matching torch impl
|
99 |
+
#pragma unroll
|
100 |
+
for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE; it += 1)
|
101 |
+
{
|
102 |
+
int element_index = seq_offset + it; // index for element
|
103 |
+
if ((element_index < 0) && (element_index >= -UPSAMPLE_REPLICATION_PAD))
|
104 |
+
{
|
105 |
+
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_left_most_value;
|
106 |
+
}
|
107 |
+
if ((element_index >= seq_len) && (element_index < seq_len + UPSAMPLE_REPLICATION_PAD))
|
108 |
+
{
|
109 |
+
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_right_most_value;
|
110 |
+
}
|
111 |
+
if ((element_index >= 0) && (element_index < seq_len))
|
112 |
+
{
|
113 |
+
elements[2 * (HALF_FILTER_SIZE + it)] = 2 * src[it];
|
114 |
+
}
|
115 |
+
}
|
116 |
+
|
117 |
+
// Apply upsampling strided convolution and write to intermediates. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT for replication padding of the downsampilng conv later
|
118 |
+
#pragma unroll
|
119 |
+
for (int it = 0; it < (2 * BUFFER_SIZE + 2 * FILTER_SIZE); it += 1)
|
120 |
+
{
|
121 |
+
input_t acc = 0.0;
|
122 |
+
int element_index = intermediate_seq_offset + it; // index for intermediate
|
123 |
+
#pragma unroll
|
124 |
+
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
125 |
+
{
|
126 |
+
if ((element_index + f_idx) >= 0)
|
127 |
+
{
|
128 |
+
acc += up_filter[f_idx] * elements[it + f_idx];
|
129 |
+
}
|
130 |
+
}
|
131 |
+
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] = acc;
|
132 |
+
}
|
133 |
+
|
134 |
+
// Apply activation function. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT and DOWNSAMPLE_REPLICATION_PAD_RIGHT for replication padding of the downsampilng conv later
|
135 |
+
double no_div_by_zero = 0.000000001;
|
136 |
+
#pragma unroll
|
137 |
+
for (int it = 0; it < 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it += 1)
|
138 |
+
{
|
139 |
+
intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] += (1.0 / (beta_val + no_div_by_zero)) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val);
|
140 |
+
}
|
141 |
+
|
142 |
+
// Apply replication padding before downsampling conv from intermediates
|
143 |
+
#pragma unroll
|
144 |
+
for (int it = 0; it < DOWNSAMPLE_REPLICATION_PAD_LEFT; it += 1)
|
145 |
+
{
|
146 |
+
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT];
|
147 |
+
}
|
148 |
+
#pragma unroll
|
149 |
+
for (int it = DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it < DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE + DOWNSAMPLE_REPLICATION_PAD_RIGHT; it += 1)
|
150 |
+
{
|
151 |
+
intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE - 1];
|
152 |
+
}
|
153 |
+
|
154 |
+
// Apply downsample strided convolution (assuming stride=2) from intermediates
|
155 |
+
#pragma unroll
|
156 |
+
for (int it = 0; it < BUFFER_SIZE; it += 1)
|
157 |
+
{
|
158 |
+
input_t acc = 0.0;
|
159 |
+
#pragma unroll
|
160 |
+
for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
|
161 |
+
{
|
162 |
+
// Add constant DOWNSAMPLE_REPLICATION_PAD_RIGHT to match torch implementation
|
163 |
+
acc += down_filter[f_idx] * intermediates[it * 2 + f_idx + DOWNSAMPLE_REPLICATION_PAD_RIGHT];
|
164 |
+
}
|
165 |
+
output[it] = acc;
|
166 |
+
}
|
167 |
+
|
168 |
+
// Write output to dst
|
169 |
+
#pragma unroll
|
170 |
+
for (int it = 0; it < BUFFER_SIZE; it += ELEMENTS_PER_LDG_STG)
|
171 |
+
{
|
172 |
+
int element_index = seq_offset + it;
|
173 |
+
if (element_index < seq_len)
|
174 |
+
{
|
175 |
+
dst[it] = output[it];
|
176 |
+
}
|
177 |
+
}
|
178 |
+
|
179 |
+
}
|
180 |
+
|
181 |
+
template <typename input_t, typename output_t, typename acc_t>
|
182 |
+
void dispatch_anti_alias_activation_forward(
|
183 |
+
output_t *dst,
|
184 |
+
const input_t *src,
|
185 |
+
const input_t *up_ftr,
|
186 |
+
const input_t *down_ftr,
|
187 |
+
const input_t *alpha,
|
188 |
+
const input_t *beta,
|
189 |
+
int batch_size,
|
190 |
+
int channels,
|
191 |
+
int seq_len)
|
192 |
+
{
|
193 |
+
if (seq_len == 0)
|
194 |
+
{
|
195 |
+
return;
|
196 |
+
}
|
197 |
+
else
|
198 |
+
{
|
199 |
+
// Use 128 threads per block to maximimize gpu utilization
|
200 |
+
constexpr int threads_per_block = 128;
|
201 |
+
constexpr int seq_len_per_block = 4096;
|
202 |
+
int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
|
203 |
+
dim3 blocks(blocks_per_seq_len, channels, batch_size);
|
204 |
+
dim3 threads(threads_per_block, 1, 1);
|
205 |
+
|
206 |
+
anti_alias_activation_forward<input_t, output_t, acc_t>
|
207 |
+
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, up_ftr, down_ftr, alpha, beta, batch_size, channels, seq_len);
|
208 |
+
}
|
209 |
+
}
|
210 |
+
}
|
211 |
+
|
212 |
+
extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta)
|
213 |
+
{
|
214 |
+
// Input is a 3d tensor with dimensions [batches, channels, seq_len]
|
215 |
+
const int batches = input.size(0);
|
216 |
+
const int channels = input.size(1);
|
217 |
+
const int seq_len = input.size(2);
|
218 |
+
|
219 |
+
// Output
|
220 |
+
auto act_options = input.options().requires_grad(false);
|
221 |
+
|
222 |
+
torch::Tensor anti_alias_activation_results =
|
223 |
+
torch::empty({batches, channels, seq_len}, act_options);
|
224 |
+
|
225 |
+
void *input_ptr = static_cast<void *>(input.data_ptr());
|
226 |
+
void *up_filter_ptr = static_cast<void *>(up_filter.data_ptr());
|
227 |
+
void *down_filter_ptr = static_cast<void *>(down_filter.data_ptr());
|
228 |
+
void *alpha_ptr = static_cast<void *>(alpha.data_ptr());
|
229 |
+
void *beta_ptr = static_cast<void *>(beta.data_ptr());
|
230 |
+
void *anti_alias_activation_results_ptr = static_cast<void *>(anti_alias_activation_results.data_ptr());
|
231 |
+
|
232 |
+
DISPATCH_FLOAT_HALF_AND_BFLOAT(
|
233 |
+
input.scalar_type(),
|
234 |
+
"dispatch anti alias activation_forward",
|
235 |
+
dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
|
236 |
+
reinterpret_cast<scalar_t *>(anti_alias_activation_results_ptr),
|
237 |
+
reinterpret_cast<const scalar_t *>(input_ptr),
|
238 |
+
reinterpret_cast<const scalar_t *>(up_filter_ptr),
|
239 |
+
reinterpret_cast<const scalar_t *>(down_filter_ptr),
|
240 |
+
reinterpret_cast<const scalar_t *>(alpha_ptr),
|
241 |
+
reinterpret_cast<const scalar_t *>(beta_ptr),
|
242 |
+
batches,
|
243 |
+
channels,
|
244 |
+
seq_len););
|
245 |
+
return anti_alias_activation_results;
|
246 |
+
}
|
BigVGAN/alias_free_activation/cuda/build/_
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
BigVGAN/alias_free_activation/cuda/compat.h
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
/*This code is copied fron NVIDIA apex:
|
18 |
+
* https://github.com/NVIDIA/apex
|
19 |
+
* with minor changes. */
|
20 |
+
|
21 |
+
#ifndef TORCH_CHECK
|
22 |
+
#define TORCH_CHECK AT_CHECK
|
23 |
+
#endif
|
24 |
+
|
25 |
+
#ifdef VERSION_GE_1_3
|
26 |
+
#define DATA_PTR data_ptr
|
27 |
+
#else
|
28 |
+
#define DATA_PTR data
|
29 |
+
#endif
|
BigVGAN/alias_free_activation/cuda/load.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import os
|
5 |
+
import pathlib
|
6 |
+
import subprocess
|
7 |
+
|
8 |
+
from torch.utils import cpp_extension
|
9 |
+
|
10 |
+
"""
|
11 |
+
Setting this param to a list has a problem of generating different compilation commands (with diferent order of architectures) and leading to recompilation of fused kernels.
|
12 |
+
Set it to empty stringo avoid recompilation and assign arch flags explicity in extra_cuda_cflags below
|
13 |
+
"""
|
14 |
+
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
|
15 |
+
|
16 |
+
|
17 |
+
def load():
|
18 |
+
# Check if cuda 11 is installed for compute capability 8.0
|
19 |
+
cc_flag = []
|
20 |
+
_, bare_metal_major, _ = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
|
21 |
+
if int(bare_metal_major) >= 11:
|
22 |
+
cc_flag.append("-gencode")
|
23 |
+
cc_flag.append("arch=compute_80,code=sm_80")
|
24 |
+
|
25 |
+
# Build path
|
26 |
+
srcpath = pathlib.Path(__file__).parent.absolute()
|
27 |
+
buildpath = srcpath / "build"
|
28 |
+
_create_build_dir(buildpath)
|
29 |
+
|
30 |
+
# Helper function to build the kernels.
|
31 |
+
def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
|
32 |
+
return cpp_extension.load(
|
33 |
+
name=name,
|
34 |
+
sources=sources,
|
35 |
+
build_directory=buildpath,
|
36 |
+
extra_cflags=[
|
37 |
+
"-O3",
|
38 |
+
],
|
39 |
+
extra_cuda_cflags=[
|
40 |
+
"-O3",
|
41 |
+
"-gencode",
|
42 |
+
"arch=compute_70,code=sm_70",
|
43 |
+
"--use_fast_math",
|
44 |
+
]
|
45 |
+
+ extra_cuda_flags
|
46 |
+
+ cc_flag,
|
47 |
+
verbose=True,
|
48 |
+
)
|
49 |
+
|
50 |
+
extra_cuda_flags = [
|
51 |
+
"-U__CUDA_NO_HALF_OPERATORS__",
|
52 |
+
"-U__CUDA_NO_HALF_CONVERSIONS__",
|
53 |
+
"--expt-relaxed-constexpr",
|
54 |
+
"--expt-extended-lambda",
|
55 |
+
]
|
56 |
+
|
57 |
+
sources = [
|
58 |
+
srcpath / "anti_alias_activation.cpp",
|
59 |
+
srcpath / "anti_alias_activation_cuda.cu",
|
60 |
+
]
|
61 |
+
anti_alias_activation_cuda = _cpp_extention_load_helper("anti_alias_activation_cuda", sources, extra_cuda_flags)
|
62 |
+
|
63 |
+
return anti_alias_activation_cuda
|
64 |
+
|
65 |
+
|
66 |
+
def _get_cuda_bare_metal_version(cuda_dir):
|
67 |
+
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
|
68 |
+
output = raw_output.split()
|
69 |
+
release_idx = output.index("release") + 1
|
70 |
+
release = output[release_idx].split(".")
|
71 |
+
bare_metal_major = release[0]
|
72 |
+
bare_metal_minor = release[1][0]
|
73 |
+
|
74 |
+
return raw_output, bare_metal_major, bare_metal_minor
|
75 |
+
|
76 |
+
|
77 |
+
def _create_build_dir(buildpath):
|
78 |
+
try:
|
79 |
+
os.mkdir(buildpath)
|
80 |
+
except OSError:
|
81 |
+
if not os.path.isdir(buildpath):
|
82 |
+
print(f"Creation of the build directory {buildpath} failed")
|
BigVGAN/alias_free_activation/cuda/type_shim.h
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* coding=utf-8
|
2 |
+
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
3 |
+
*
|
4 |
+
* Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
* you may not use this file except in compliance with the License.
|
6 |
+
* You may obtain a copy of the License at
|
7 |
+
*
|
8 |
+
* http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
*
|
10 |
+
* Unless required by applicable law or agreed to in writing, software
|
11 |
+
* distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
* See the License for the specific language governing permissions and
|
14 |
+
* limitations under the License.
|
15 |
+
*/
|
16 |
+
|
17 |
+
#include <ATen/ATen.h>
|
18 |
+
#include "compat.h"
|
19 |
+
|
20 |
+
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, NAME, ...) \
|
21 |
+
switch (TYPE) \
|
22 |
+
{ \
|
23 |
+
case at::ScalarType::Float: \
|
24 |
+
{ \
|
25 |
+
using scalar_t = float; \
|
26 |
+
__VA_ARGS__; \
|
27 |
+
break; \
|
28 |
+
} \
|
29 |
+
case at::ScalarType::Half: \
|
30 |
+
{ \
|
31 |
+
using scalar_t = at::Half; \
|
32 |
+
__VA_ARGS__; \
|
33 |
+
break; \
|
34 |
+
} \
|
35 |
+
case at::ScalarType::BFloat16: \
|
36 |
+
{ \
|
37 |
+
using scalar_t = at::BFloat16; \
|
38 |
+
__VA_ARGS__; \
|
39 |
+
break; \
|
40 |
+
} \
|
41 |
+
default: \
|
42 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
|
43 |
+
}
|
44 |
+
|
45 |
+
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
|
46 |
+
switch (TYPEIN) \
|
47 |
+
{ \
|
48 |
+
case at::ScalarType::Float: \
|
49 |
+
{ \
|
50 |
+
using scalar_t_in = float; \
|
51 |
+
switch (TYPEOUT) \
|
52 |
+
{ \
|
53 |
+
case at::ScalarType::Float: \
|
54 |
+
{ \
|
55 |
+
using scalar_t_out = float; \
|
56 |
+
__VA_ARGS__; \
|
57 |
+
break; \
|
58 |
+
} \
|
59 |
+
case at::ScalarType::Half: \
|
60 |
+
{ \
|
61 |
+
using scalar_t_out = at::Half; \
|
62 |
+
__VA_ARGS__; \
|
63 |
+
break; \
|
64 |
+
} \
|
65 |
+
case at::ScalarType::BFloat16: \
|
66 |
+
{ \
|
67 |
+
using scalar_t_out = at::BFloat16; \
|
68 |
+
__VA_ARGS__; \
|
69 |
+
break; \
|
70 |
+
} \
|
71 |
+
default: \
|
72 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
|
73 |
+
} \
|
74 |
+
break; \
|
75 |
+
} \
|
76 |
+
case at::ScalarType::Half: \
|
77 |
+
{ \
|
78 |
+
using scalar_t_in = at::Half; \
|
79 |
+
using scalar_t_out = at::Half; \
|
80 |
+
__VA_ARGS__; \
|
81 |
+
break; \
|
82 |
+
} \
|
83 |
+
case at::ScalarType::BFloat16: \
|
84 |
+
{ \
|
85 |
+
using scalar_t_in = at::BFloat16; \
|
86 |
+
using scalar_t_out = at::BFloat16; \
|
87 |
+
__VA_ARGS__; \
|
88 |
+
break; \
|
89 |
+
} \
|
90 |
+
default: \
|
91 |
+
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
|
92 |
+
}
|
BigVGAN/alias_free_activation/torch/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
from .filter import *
|
5 |
+
from .resample import *
|
6 |
+
from .act import *
|
BigVGAN/alias_free_activation/torch/act.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from .resample import UpSample1d, DownSample1d
|
6 |
+
|
7 |
+
|
8 |
+
class Activation1d(nn.Module):
|
9 |
+
def __init__(
|
10 |
+
self,
|
11 |
+
activation,
|
12 |
+
up_ratio: int = 2,
|
13 |
+
down_ratio: int = 2,
|
14 |
+
up_kernel_size: int = 12,
|
15 |
+
down_kernel_size: int = 12,
|
16 |
+
):
|
17 |
+
super().__init__()
|
18 |
+
self.up_ratio = up_ratio
|
19 |
+
self.down_ratio = down_ratio
|
20 |
+
self.act = activation
|
21 |
+
self.upsample = UpSample1d(up_ratio, up_kernel_size)
|
22 |
+
self.downsample = DownSample1d(down_ratio, down_kernel_size)
|
23 |
+
|
24 |
+
# x: [B,C,T]
|
25 |
+
def forward(self, x):
|
26 |
+
x = self.upsample(x)
|
27 |
+
x = self.act(x)
|
28 |
+
x = self.downsample(x)
|
29 |
+
|
30 |
+
return x
|
BigVGAN/alias_free_activation/torch/filter.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import math
|
8 |
+
|
9 |
+
if "sinc" in dir(torch):
|
10 |
+
sinc = torch.sinc
|
11 |
+
else:
|
12 |
+
# This code is adopted from adefossez's julius.core.sinc under the MIT License
|
13 |
+
# https://adefossez.github.io/julius/julius/core.html
|
14 |
+
# LICENSE is in incl_licenses directory.
|
15 |
+
def sinc(x: torch.Tensor):
|
16 |
+
"""
|
17 |
+
Implementation of sinc, i.e. sin(pi * x) / (pi * x)
|
18 |
+
__Warning__: Different to julius.sinc, the input is multiplied by `pi`!
|
19 |
+
"""
|
20 |
+
return torch.where(
|
21 |
+
x == 0,
|
22 |
+
torch.tensor(1.0, device=x.device, dtype=x.dtype),
|
23 |
+
torch.sin(math.pi * x) / math.pi / x,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
# This code is adopted from adefossez's julius.lowpass.LowPassFilters under the MIT License
|
28 |
+
# https://adefossez.github.io/julius/julius/lowpass.html
|
29 |
+
# LICENSE is in incl_licenses directory.
|
30 |
+
def kaiser_sinc_filter1d(cutoff, half_width, kernel_size): # return filter [1,1,kernel_size]
|
31 |
+
even = kernel_size % 2 == 0
|
32 |
+
half_size = kernel_size // 2
|
33 |
+
|
34 |
+
# For kaiser window
|
35 |
+
delta_f = 4 * half_width
|
36 |
+
A = 2.285 * (half_size - 1) * math.pi * delta_f + 7.95
|
37 |
+
if A > 50.0:
|
38 |
+
beta = 0.1102 * (A - 8.7)
|
39 |
+
elif A >= 21.0:
|
40 |
+
beta = 0.5842 * (A - 21) ** 0.4 + 0.07886 * (A - 21.0)
|
41 |
+
else:
|
42 |
+
beta = 0.0
|
43 |
+
window = torch.kaiser_window(kernel_size, beta=beta, periodic=False)
|
44 |
+
|
45 |
+
# ratio = 0.5/cutoff -> 2 * cutoff = 1 / ratio
|
46 |
+
if even:
|
47 |
+
time = torch.arange(-half_size, half_size) + 0.5
|
48 |
+
else:
|
49 |
+
time = torch.arange(kernel_size) - half_size
|
50 |
+
if cutoff == 0:
|
51 |
+
filter_ = torch.zeros_like(time)
|
52 |
+
else:
|
53 |
+
filter_ = 2 * cutoff * window * sinc(2 * cutoff * time)
|
54 |
+
"""
|
55 |
+
Normalize filter to have sum = 1, otherwise we will have a small leakage of the constant component in the input signal.
|
56 |
+
"""
|
57 |
+
filter_ /= filter_.sum()
|
58 |
+
filter = filter_.view(1, 1, kernel_size)
|
59 |
+
|
60 |
+
return filter
|
61 |
+
|
62 |
+
|
63 |
+
class LowPassFilter1d(nn.Module):
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
cutoff=0.5,
|
67 |
+
half_width=0.6,
|
68 |
+
stride: int = 1,
|
69 |
+
padding: bool = True,
|
70 |
+
padding_mode: str = "replicate",
|
71 |
+
kernel_size: int = 12,
|
72 |
+
):
|
73 |
+
"""
|
74 |
+
kernel_size should be even number for stylegan3 setup, in this implementation, odd number is also possible.
|
75 |
+
"""
|
76 |
+
super().__init__()
|
77 |
+
if cutoff < -0.0:
|
78 |
+
raise ValueError("Minimum cutoff must be larger than zero.")
|
79 |
+
if cutoff > 0.5:
|
80 |
+
raise ValueError("A cutoff above 0.5 does not make sense.")
|
81 |
+
self.kernel_size = kernel_size
|
82 |
+
self.even = kernel_size % 2 == 0
|
83 |
+
self.pad_left = kernel_size // 2 - int(self.even)
|
84 |
+
self.pad_right = kernel_size // 2
|
85 |
+
self.stride = stride
|
86 |
+
self.padding = padding
|
87 |
+
self.padding_mode = padding_mode
|
88 |
+
filter = kaiser_sinc_filter1d(cutoff, half_width, kernel_size)
|
89 |
+
self.register_buffer("filter", filter)
|
90 |
+
|
91 |
+
# Input [B, C, T]
|
92 |
+
def forward(self, x):
|
93 |
+
_, C, _ = x.shape
|
94 |
+
|
95 |
+
if self.padding:
|
96 |
+
x = F.pad(x, (self.pad_left, self.pad_right), mode=self.padding_mode)
|
97 |
+
out = F.conv1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
98 |
+
|
99 |
+
return out
|
BigVGAN/alias_free_activation/torch/resample.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/junjun3518/alias-free-torch under the Apache License 2.0
|
2 |
+
# LICENSE is in incl_licenses directory.
|
3 |
+
|
4 |
+
import torch.nn as nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
from .filter import LowPassFilter1d
|
7 |
+
from .filter import kaiser_sinc_filter1d
|
8 |
+
|
9 |
+
|
10 |
+
class UpSample1d(nn.Module):
|
11 |
+
def __init__(self, ratio=2, kernel_size=None):
|
12 |
+
super().__init__()
|
13 |
+
self.ratio = ratio
|
14 |
+
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
15 |
+
self.stride = ratio
|
16 |
+
self.pad = self.kernel_size // ratio - 1
|
17 |
+
self.pad_left = self.pad * self.stride + (self.kernel_size - self.stride) // 2
|
18 |
+
self.pad_right = self.pad * self.stride + (self.kernel_size - self.stride + 1) // 2
|
19 |
+
filter = kaiser_sinc_filter1d(cutoff=0.5 / ratio, half_width=0.6 / ratio, kernel_size=self.kernel_size)
|
20 |
+
self.register_buffer("filter", filter)
|
21 |
+
|
22 |
+
# x: [B, C, T]
|
23 |
+
def forward(self, x):
|
24 |
+
_, C, _ = x.shape
|
25 |
+
|
26 |
+
x = F.pad(x, (self.pad, self.pad), mode="replicate")
|
27 |
+
x = self.ratio * F.conv_transpose1d(x, self.filter.expand(C, -1, -1), stride=self.stride, groups=C)
|
28 |
+
x = x[..., self.pad_left : -self.pad_right]
|
29 |
+
|
30 |
+
return x
|
31 |
+
|
32 |
+
|
33 |
+
class DownSample1d(nn.Module):
|
34 |
+
def __init__(self, ratio=2, kernel_size=None):
|
35 |
+
super().__init__()
|
36 |
+
self.ratio = ratio
|
37 |
+
self.kernel_size = int(6 * ratio // 2) * 2 if kernel_size is None else kernel_size
|
38 |
+
self.lowpass = LowPassFilter1d(
|
39 |
+
cutoff=0.5 / ratio,
|
40 |
+
half_width=0.6 / ratio,
|
41 |
+
stride=ratio,
|
42 |
+
kernel_size=self.kernel_size,
|
43 |
+
)
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
xx = self.lowpass(x)
|
47 |
+
|
48 |
+
return xx
|
BigVGAN/bigvgan.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
from pathlib import Path
|
10 |
+
from typing import Optional, Union, Dict
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
from torch.nn import Conv1d, ConvTranspose1d
|
15 |
+
from torch.nn.utils import weight_norm, remove_weight_norm
|
16 |
+
|
17 |
+
from . import activations
|
18 |
+
from .utils0 import init_weights, get_padding
|
19 |
+
from .alias_free_activation.torch.act import Activation1d as TorchActivation1d
|
20 |
+
from .env import AttrDict
|
21 |
+
|
22 |
+
from huggingface_hub import PyTorchModelHubMixin, hf_hub_download
|
23 |
+
|
24 |
+
|
25 |
+
def load_hparams_from_json(path) -> AttrDict:
|
26 |
+
with open(path) as f:
|
27 |
+
data = f.read()
|
28 |
+
return AttrDict(json.loads(data))
|
29 |
+
|
30 |
+
|
31 |
+
class AMPBlock1(torch.nn.Module):
|
32 |
+
"""
|
33 |
+
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
|
34 |
+
AMPBlock1 has additional self.convs2 that contains additional Conv1d layers with a fixed dilation=1 followed by each layer in self.convs1
|
35 |
+
|
36 |
+
Args:
|
37 |
+
h (AttrDict): Hyperparameters.
|
38 |
+
channels (int): Number of convolution channels.
|
39 |
+
kernel_size (int): Size of the convolution kernel. Default is 3.
|
40 |
+
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
|
41 |
+
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
h: AttrDict,
|
47 |
+
channels: int,
|
48 |
+
kernel_size: int = 3,
|
49 |
+
dilation: tuple = (1, 3, 5),
|
50 |
+
activation: str = None,
|
51 |
+
):
|
52 |
+
super().__init__()
|
53 |
+
|
54 |
+
self.h = h
|
55 |
+
|
56 |
+
self.convs1 = nn.ModuleList(
|
57 |
+
[
|
58 |
+
weight_norm(
|
59 |
+
Conv1d(
|
60 |
+
channels,
|
61 |
+
channels,
|
62 |
+
kernel_size,
|
63 |
+
stride=1,
|
64 |
+
dilation=d,
|
65 |
+
padding=get_padding(kernel_size, d),
|
66 |
+
)
|
67 |
+
)
|
68 |
+
for d in dilation
|
69 |
+
]
|
70 |
+
)
|
71 |
+
self.convs1.apply(init_weights)
|
72 |
+
|
73 |
+
self.convs2 = nn.ModuleList(
|
74 |
+
[
|
75 |
+
weight_norm(
|
76 |
+
Conv1d(
|
77 |
+
channels,
|
78 |
+
channels,
|
79 |
+
kernel_size,
|
80 |
+
stride=1,
|
81 |
+
dilation=1,
|
82 |
+
padding=get_padding(kernel_size, 1),
|
83 |
+
)
|
84 |
+
)
|
85 |
+
for _ in range(len(dilation))
|
86 |
+
]
|
87 |
+
)
|
88 |
+
self.convs2.apply(init_weights)
|
89 |
+
|
90 |
+
self.num_layers = len(self.convs1) + len(self.convs2) # Total number of conv layers
|
91 |
+
|
92 |
+
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
93 |
+
if self.h.get("use_cuda_kernel", False):
|
94 |
+
from .alias_free_activation.cuda.activation1d import (
|
95 |
+
Activation1d as CudaActivation1d,
|
96 |
+
)
|
97 |
+
|
98 |
+
Activation1d = CudaActivation1d
|
99 |
+
else:
|
100 |
+
Activation1d = TorchActivation1d
|
101 |
+
|
102 |
+
# Activation functions
|
103 |
+
if activation == "snake":
|
104 |
+
self.activations = nn.ModuleList(
|
105 |
+
[
|
106 |
+
Activation1d(activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
107 |
+
for _ in range(self.num_layers)
|
108 |
+
]
|
109 |
+
)
|
110 |
+
elif activation == "snakebeta":
|
111 |
+
self.activations = nn.ModuleList(
|
112 |
+
[
|
113 |
+
Activation1d(activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
114 |
+
for _ in range(self.num_layers)
|
115 |
+
]
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
raise NotImplementedError(
|
119 |
+
"activation incorrectly specified. check the config file and look for 'activation'."
|
120 |
+
)
|
121 |
+
|
122 |
+
def forward(self, x):
|
123 |
+
acts1, acts2 = self.activations[::2], self.activations[1::2]
|
124 |
+
for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
|
125 |
+
xt = a1(x)
|
126 |
+
xt = c1(xt)
|
127 |
+
xt = a2(xt)
|
128 |
+
xt = c2(xt)
|
129 |
+
x = xt + x
|
130 |
+
|
131 |
+
return x
|
132 |
+
|
133 |
+
def remove_weight_norm(self):
|
134 |
+
for l in self.convs1:
|
135 |
+
remove_weight_norm(l)
|
136 |
+
for l in self.convs2:
|
137 |
+
remove_weight_norm(l)
|
138 |
+
|
139 |
+
|
140 |
+
class AMPBlock2(torch.nn.Module):
|
141 |
+
"""
|
142 |
+
AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
|
143 |
+
Unlike AMPBlock1, AMPBlock2 does not contain extra Conv1d layers with fixed dilation=1
|
144 |
+
|
145 |
+
Args:
|
146 |
+
h (AttrDict): Hyperparameters.
|
147 |
+
channels (int): Number of convolution channels.
|
148 |
+
kernel_size (int): Size of the convolution kernel. Default is 3.
|
149 |
+
dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
|
150 |
+
activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
|
151 |
+
"""
|
152 |
+
|
153 |
+
def __init__(
|
154 |
+
self,
|
155 |
+
h: AttrDict,
|
156 |
+
channels: int,
|
157 |
+
kernel_size: int = 3,
|
158 |
+
dilation: tuple = (1, 3, 5),
|
159 |
+
activation: str = None,
|
160 |
+
):
|
161 |
+
super().__init__()
|
162 |
+
|
163 |
+
self.h = h
|
164 |
+
|
165 |
+
self.convs = nn.ModuleList(
|
166 |
+
[
|
167 |
+
weight_norm(
|
168 |
+
Conv1d(
|
169 |
+
channels,
|
170 |
+
channels,
|
171 |
+
kernel_size,
|
172 |
+
stride=1,
|
173 |
+
dilation=d,
|
174 |
+
padding=get_padding(kernel_size, d),
|
175 |
+
)
|
176 |
+
)
|
177 |
+
for d in dilation
|
178 |
+
]
|
179 |
+
)
|
180 |
+
self.convs.apply(init_weights)
|
181 |
+
|
182 |
+
self.num_layers = len(self.convs) # Total number of conv layers
|
183 |
+
|
184 |
+
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
185 |
+
if self.h.get("use_cuda_kernel", False):
|
186 |
+
from .alias_free_activation.cuda.activation1d import (
|
187 |
+
Activation1d as CudaActivation1d,
|
188 |
+
)
|
189 |
+
|
190 |
+
Activation1d = CudaActivation1d
|
191 |
+
else:
|
192 |
+
Activation1d = TorchActivation1d
|
193 |
+
|
194 |
+
# Activation functions
|
195 |
+
if activation == "snake":
|
196 |
+
self.activations = nn.ModuleList(
|
197 |
+
[
|
198 |
+
Activation1d(activation=activations.Snake(channels, alpha_logscale=h.snake_logscale))
|
199 |
+
for _ in range(self.num_layers)
|
200 |
+
]
|
201 |
+
)
|
202 |
+
elif activation == "snakebeta":
|
203 |
+
self.activations = nn.ModuleList(
|
204 |
+
[
|
205 |
+
Activation1d(activation=activations.SnakeBeta(channels, alpha_logscale=h.snake_logscale))
|
206 |
+
for _ in range(self.num_layers)
|
207 |
+
]
|
208 |
+
)
|
209 |
+
else:
|
210 |
+
raise NotImplementedError(
|
211 |
+
"activation incorrectly specified. check the config file and look for 'activation'."
|
212 |
+
)
|
213 |
+
|
214 |
+
def forward(self, x):
|
215 |
+
for c, a in zip(self.convs, self.activations):
|
216 |
+
xt = a(x)
|
217 |
+
xt = c(xt)
|
218 |
+
x = xt + x
|
219 |
+
return x
|
220 |
+
|
221 |
+
def remove_weight_norm(self):
|
222 |
+
for l in self.convs:
|
223 |
+
remove_weight_norm(l)
|
224 |
+
|
225 |
+
|
226 |
+
class BigVGAN(
|
227 |
+
torch.nn.Module,
|
228 |
+
PyTorchModelHubMixin,
|
229 |
+
# library_name="bigvgan",
|
230 |
+
# repo_url="https://github.com/NVIDIA/BigVGAN",
|
231 |
+
# docs_url="https://github.com/NVIDIA/BigVGAN/blob/main/README.md",
|
232 |
+
# pipeline_tag="audio-to-audio",
|
233 |
+
# license="mit",
|
234 |
+
# tags=["neural-vocoder", "audio-generation", "arxiv:2206.04658"],
|
235 |
+
):
|
236 |
+
"""
|
237 |
+
BigVGAN is a neural vocoder model that applies anti-aliased periodic activation for residual blocks (resblocks).
|
238 |
+
New in BigVGAN-v2: it can optionally use optimized CUDA kernels for AMP (anti-aliased multi-periodicity) blocks.
|
239 |
+
|
240 |
+
Args:
|
241 |
+
h (AttrDict): Hyperparameters.
|
242 |
+
use_cuda_kernel (bool): If set to True, loads optimized CUDA kernels for AMP. This should be used for inference only, as training is not supported with CUDA kernels.
|
243 |
+
|
244 |
+
Note:
|
245 |
+
- The `use_cuda_kernel` parameter should be used for inference only, as training with CUDA kernels is not supported.
|
246 |
+
- Ensure that the activation function is correctly specified in the hyperparameters (h.activation).
|
247 |
+
"""
|
248 |
+
|
249 |
+
def __init__(self, h: AttrDict, use_cuda_kernel: bool = False):
|
250 |
+
super().__init__()
|
251 |
+
self.h = h
|
252 |
+
self.h["use_cuda_kernel"] = use_cuda_kernel
|
253 |
+
|
254 |
+
# Select which Activation1d, lazy-load cuda version to ensure backward compatibility
|
255 |
+
if self.h.get("use_cuda_kernel", False):
|
256 |
+
from .alias_free_activation.cuda.activation1d import (
|
257 |
+
Activation1d as CudaActivation1d,
|
258 |
+
)
|
259 |
+
|
260 |
+
Activation1d = CudaActivation1d
|
261 |
+
else:
|
262 |
+
Activation1d = TorchActivation1d
|
263 |
+
|
264 |
+
self.num_kernels = len(h.resblock_kernel_sizes)
|
265 |
+
self.num_upsamples = len(h.upsample_rates)
|
266 |
+
|
267 |
+
# Pre-conv
|
268 |
+
self.conv_pre = weight_norm(Conv1d(h.num_mels, h.upsample_initial_channel, 7, 1, padding=3))
|
269 |
+
|
270 |
+
# Define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
|
271 |
+
if h.resblock == "1":
|
272 |
+
resblock_class = AMPBlock1
|
273 |
+
elif h.resblock == "2":
|
274 |
+
resblock_class = AMPBlock2
|
275 |
+
else:
|
276 |
+
raise ValueError(f"Incorrect resblock class specified in hyperparameters. Got {h.resblock}")
|
277 |
+
|
278 |
+
# Transposed conv-based upsamplers. does not apply anti-aliasing
|
279 |
+
self.ups = nn.ModuleList()
|
280 |
+
for i, (u, k) in enumerate(zip(h.upsample_rates, h.upsample_kernel_sizes)):
|
281 |
+
self.ups.append(
|
282 |
+
nn.ModuleList(
|
283 |
+
[
|
284 |
+
weight_norm(
|
285 |
+
ConvTranspose1d(
|
286 |
+
h.upsample_initial_channel // (2**i),
|
287 |
+
h.upsample_initial_channel // (2 ** (i + 1)),
|
288 |
+
k,
|
289 |
+
u,
|
290 |
+
padding=(k - u) // 2,
|
291 |
+
)
|
292 |
+
)
|
293 |
+
]
|
294 |
+
)
|
295 |
+
)
|
296 |
+
|
297 |
+
# Residual blocks using anti-aliased multi-periodicity composition modules (AMP)
|
298 |
+
self.resblocks = nn.ModuleList()
|
299 |
+
for i in range(len(self.ups)):
|
300 |
+
ch = h.upsample_initial_channel // (2 ** (i + 1))
|
301 |
+
for j, (k, d) in enumerate(zip(h.resblock_kernel_sizes, h.resblock_dilation_sizes)):
|
302 |
+
self.resblocks.append(resblock_class(h, ch, k, d, activation=h.activation))
|
303 |
+
|
304 |
+
# Post-conv
|
305 |
+
activation_post = (
|
306 |
+
activations.Snake(ch, alpha_logscale=h.snake_logscale)
|
307 |
+
if h.activation == "snake"
|
308 |
+
else (activations.SnakeBeta(ch, alpha_logscale=h.snake_logscale) if h.activation == "snakebeta" else None)
|
309 |
+
)
|
310 |
+
if activation_post is None:
|
311 |
+
raise NotImplementedError(
|
312 |
+
"activation incorrectly specified. check the config file and look for 'activation'."
|
313 |
+
)
|
314 |
+
|
315 |
+
self.activation_post = Activation1d(activation=activation_post)
|
316 |
+
|
317 |
+
# Whether to use bias for the final conv_post. Default to True for backward compatibility
|
318 |
+
self.use_bias_at_final = h.get("use_bias_at_final", True)
|
319 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final))
|
320 |
+
|
321 |
+
# Weight initialization
|
322 |
+
for i in range(len(self.ups)):
|
323 |
+
self.ups[i].apply(init_weights)
|
324 |
+
self.conv_post.apply(init_weights)
|
325 |
+
|
326 |
+
# Final tanh activation. Defaults to True for backward compatibility
|
327 |
+
self.use_tanh_at_final = h.get("use_tanh_at_final", True)
|
328 |
+
|
329 |
+
def forward(self, x):
|
330 |
+
# Pre-conv
|
331 |
+
x = self.conv_pre(x)
|
332 |
+
|
333 |
+
for i in range(self.num_upsamples):
|
334 |
+
# Upsampling
|
335 |
+
for i_up in range(len(self.ups[i])):
|
336 |
+
x = self.ups[i][i_up](x)
|
337 |
+
# AMP blocks
|
338 |
+
xs = None
|
339 |
+
for j in range(self.num_kernels):
|
340 |
+
if xs is None:
|
341 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
342 |
+
else:
|
343 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
344 |
+
x = xs / self.num_kernels
|
345 |
+
|
346 |
+
# Post-conv
|
347 |
+
x = self.activation_post(x)
|
348 |
+
x = self.conv_post(x)
|
349 |
+
# Final tanh activation
|
350 |
+
if self.use_tanh_at_final:
|
351 |
+
x = torch.tanh(x)
|
352 |
+
else:
|
353 |
+
x = torch.clamp(x, min=-1.0, max=1.0) # Bound the output to [-1, 1]
|
354 |
+
|
355 |
+
return x
|
356 |
+
|
357 |
+
def remove_weight_norm(self):
|
358 |
+
try:
|
359 |
+
# print("Removing weight norm...")
|
360 |
+
for l in self.ups:
|
361 |
+
for l_i in l:
|
362 |
+
remove_weight_norm(l_i)
|
363 |
+
for l in self.resblocks:
|
364 |
+
l.remove_weight_norm()
|
365 |
+
remove_weight_norm(self.conv_pre)
|
366 |
+
remove_weight_norm(self.conv_post)
|
367 |
+
except ValueError:
|
368 |
+
print("[INFO] Model already removed weight norm. Skipping!")
|
369 |
+
pass
|
370 |
+
|
371 |
+
# Additional methods for huggingface_hub support
|
372 |
+
def _save_pretrained(self, save_directory: Path) -> None:
|
373 |
+
"""Save weights and config.json from a Pytorch model to a local directory."""
|
374 |
+
|
375 |
+
model_path = save_directory / "bigvgan_generator.pt"
|
376 |
+
torch.save({"generator": self.state_dict()}, model_path)
|
377 |
+
|
378 |
+
config_path = save_directory / "config.json"
|
379 |
+
with open(config_path, "w") as config_file:
|
380 |
+
json.dump(self.h, config_file, indent=4)
|
381 |
+
|
382 |
+
@classmethod
|
383 |
+
def _from_pretrained(
|
384 |
+
cls,
|
385 |
+
*,
|
386 |
+
model_id: str,
|
387 |
+
revision: str,
|
388 |
+
cache_dir: str,
|
389 |
+
force_download: bool,
|
390 |
+
proxies: Optional[Dict],
|
391 |
+
resume_download: bool,
|
392 |
+
local_files_only: bool,
|
393 |
+
token: Union[str, bool, None],
|
394 |
+
map_location: str = "cpu", # Additional argument
|
395 |
+
strict: bool = False, # Additional argument
|
396 |
+
use_cuda_kernel: bool = False,
|
397 |
+
**model_kwargs,
|
398 |
+
):
|
399 |
+
"""Load Pytorch pretrained weights and return the loaded model."""
|
400 |
+
|
401 |
+
# Download and load hyperparameters (h) used by BigVGAN
|
402 |
+
if os.path.isdir(model_id):
|
403 |
+
# print("Loading config.json from local directory")
|
404 |
+
config_file = os.path.join(model_id, "config.json")
|
405 |
+
else:
|
406 |
+
config_file = hf_hub_download(
|
407 |
+
repo_id=model_id,
|
408 |
+
filename="config.json",
|
409 |
+
revision=revision,
|
410 |
+
cache_dir=cache_dir,
|
411 |
+
force_download=force_download,
|
412 |
+
proxies=proxies,
|
413 |
+
resume_download=resume_download,
|
414 |
+
token=token,
|
415 |
+
local_files_only=local_files_only,
|
416 |
+
)
|
417 |
+
h = load_hparams_from_json(config_file)
|
418 |
+
|
419 |
+
# instantiate BigVGAN using h
|
420 |
+
if use_cuda_kernel:
|
421 |
+
print(
|
422 |
+
"[WARNING] You have specified use_cuda_kernel=True during BigVGAN.from_pretrained(). Only inference is supported (training is not implemented)!"
|
423 |
+
)
|
424 |
+
print(
|
425 |
+
"[WARNING] You need nvcc and ninja installed in your system that matches your PyTorch build is using to build the kernel. If not, the model will fail to initialize or generate incorrect waveform!"
|
426 |
+
)
|
427 |
+
print(
|
428 |
+
"[WARNING] For detail, see the official GitHub repository: https://github.com/NVIDIA/BigVGAN?tab=readme-ov-file#using-custom-cuda-kernel-for-synthesis"
|
429 |
+
)
|
430 |
+
model = cls(h, use_cuda_kernel=use_cuda_kernel)
|
431 |
+
|
432 |
+
# Download and load pretrained generator weight
|
433 |
+
if os.path.isdir(model_id):
|
434 |
+
# print("Loading weights from local directory")
|
435 |
+
model_file = os.path.join(model_id, "bigvgan_generator.pt")
|
436 |
+
else:
|
437 |
+
# print(f"Loading weights from {model_id}")
|
438 |
+
model_file = hf_hub_download(
|
439 |
+
repo_id=model_id,
|
440 |
+
filename="bigvgan_generator.pt",
|
441 |
+
revision=revision,
|
442 |
+
cache_dir=cache_dir,
|
443 |
+
force_download=force_download,
|
444 |
+
proxies=proxies,
|
445 |
+
resume_download=resume_download,
|
446 |
+
token=token,
|
447 |
+
local_files_only=local_files_only,
|
448 |
+
)
|
449 |
+
|
450 |
+
checkpoint_dict = torch.load(model_file, map_location=map_location)
|
451 |
+
|
452 |
+
try:
|
453 |
+
model.load_state_dict(checkpoint_dict["generator"])
|
454 |
+
except RuntimeError:
|
455 |
+
print(
|
456 |
+
"[INFO] the pretrained checkpoint does not contain weight norm. Loading the checkpoint after removing weight norm!"
|
457 |
+
)
|
458 |
+
model.remove_weight_norm()
|
459 |
+
model.load_state_dict(checkpoint_dict["generator"])
|
460 |
+
|
461 |
+
return model
|
BigVGAN/configs/bigvgan_22khz_80band.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 0,
|
4 |
+
"batch_size": 32,
|
5 |
+
"learning_rate": 0.0001,
|
6 |
+
"adam_b1": 0.8,
|
7 |
+
"adam_b2": 0.99,
|
8 |
+
"lr_decay": 0.9999996,
|
9 |
+
"seed": 1234,
|
10 |
+
|
11 |
+
"upsample_rates": [4,4,2,2,2,2],
|
12 |
+
"upsample_kernel_sizes": [8,8,4,4,4,4],
|
13 |
+
"upsample_initial_channel": 1536,
|
14 |
+
"resblock_kernel_sizes": [3,7,11],
|
15 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
16 |
+
|
17 |
+
"activation": "snakebeta",
|
18 |
+
"snake_logscale": true,
|
19 |
+
|
20 |
+
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
|
21 |
+
"mpd_reshapes": [2, 3, 5, 7, 11],
|
22 |
+
"use_spectral_norm": false,
|
23 |
+
"discriminator_channel_mult": 1,
|
24 |
+
|
25 |
+
"segment_size": 8192,
|
26 |
+
"num_mels": 80,
|
27 |
+
"num_freq": 1025,
|
28 |
+
"n_fft": 1024,
|
29 |
+
"hop_size": 256,
|
30 |
+
"win_size": 1024,
|
31 |
+
|
32 |
+
"sampling_rate": 22050,
|
33 |
+
|
34 |
+
"fmin": 0,
|
35 |
+
"fmax": 8000,
|
36 |
+
"fmax_for_loss": null,
|
37 |
+
|
38 |
+
"num_workers": 4,
|
39 |
+
|
40 |
+
"dist_config": {
|
41 |
+
"dist_backend": "nccl",
|
42 |
+
"dist_url": "tcp://localhost:54321",
|
43 |
+
"world_size": 1
|
44 |
+
}
|
45 |
+
}
|
BigVGAN/configs/bigvgan_24khz_100band.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 0,
|
4 |
+
"batch_size": 32,
|
5 |
+
"learning_rate": 0.0001,
|
6 |
+
"adam_b1": 0.8,
|
7 |
+
"adam_b2": 0.99,
|
8 |
+
"lr_decay": 0.9999996,
|
9 |
+
"seed": 1234,
|
10 |
+
|
11 |
+
"upsample_rates": [4,4,2,2,2,2],
|
12 |
+
"upsample_kernel_sizes": [8,8,4,4,4,4],
|
13 |
+
"upsample_initial_channel": 1536,
|
14 |
+
"resblock_kernel_sizes": [3,7,11],
|
15 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
16 |
+
|
17 |
+
"activation": "snakebeta",
|
18 |
+
"snake_logscale": true,
|
19 |
+
|
20 |
+
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
|
21 |
+
"mpd_reshapes": [2, 3, 5, 7, 11],
|
22 |
+
"use_spectral_norm": false,
|
23 |
+
"discriminator_channel_mult": 1,
|
24 |
+
|
25 |
+
"segment_size": 8192,
|
26 |
+
"num_mels": 100,
|
27 |
+
"num_freq": 1025,
|
28 |
+
"n_fft": 1024,
|
29 |
+
"hop_size": 256,
|
30 |
+
"win_size": 1024,
|
31 |
+
|
32 |
+
"sampling_rate": 24000,
|
33 |
+
|
34 |
+
"fmin": 0,
|
35 |
+
"fmax": 12000,
|
36 |
+
"fmax_for_loss": null,
|
37 |
+
|
38 |
+
"num_workers": 4,
|
39 |
+
|
40 |
+
"dist_config": {
|
41 |
+
"dist_backend": "nccl",
|
42 |
+
"dist_url": "tcp://localhost:54321",
|
43 |
+
"world_size": 1
|
44 |
+
}
|
45 |
+
}
|
BigVGAN/configs/bigvgan_base_22khz_80band.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"resblock": "1",
|
3 |
+
"num_gpus": 0,
|
4 |
+
"batch_size": 32,
|
5 |
+
"learning_rate": 0.0001,
|
6 |
+
"adam_b1": 0.8,
|
7 |
+
"adam_b2": 0.99,
|
8 |
+
"lr_decay": 0.9999996,
|
9 |
+
"seed": 1234,
|
10 |
+
|
11 |
+
"upsample_rates": [8,8,2,2],
|
12 |
+
"upsample_kernel_sizes": [16,16,4,4],
|
13 |
+
"upsample_initial_channel": 512,
|
14 |
+
"resblock_kernel_sizes": [3,7,11],
|
15 |
+
"resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
|
16 |
+
|
17 |
+
"activation": "snakebeta",
|
18 |
+
"snake_logscale": true,
|
19 |
+
|
20 |
+
"resolutions": [[1024, 120, 600], [2048, 240, 1200], [512, 50, 240]],
|
21 |
+
"mpd_reshapes": [2, 3, 5, 7, 11],
|
22 |
+
"use_spectral_norm": false,
|
23 |
+
"discriminator_channel_mult": 1,
|
24 |
+
|
25 |
+
"segment_size": 8192,
|
26 |
+
"num_mels": 80,
|
27 |
+
"num_freq": 1025,
|
28 |
+
"n_fft": 1024,
|
29 |
+
"hop_size": 256,
|
30 |
+
"win_size": 1024,
|
31 |
+
|
32 |
+
"sampling_rate": 22050,
|
33 |
+
|
34 |
+
"fmin": 0,
|
35 |
+
"fmax": 8000,
|
36 |
+
"fmax_for_loss": null,
|
37 |
+
|
38 |
+
"num_workers": 4,
|
39 |
+
|
40 |
+
"dist_config": {
|
41 |
+
"dist_backend": "nccl",
|
42 |
+
"dist_url": "tcp://localhost:54321",
|
43 |
+
"world_size": 1
|
44 |
+
}
|
45 |
+
}
|