|
|
|
|
|
|
|
"""Res2Net implementation is adapted from https://github.com/wenet-e2e/wespeaker. |
|
ERes2Net incorporates both local and global feature fusion techniques to improve the performance. |
|
The local feature fusion (LFF) fuses the features within one single residual block to extract the local signal. |
|
The global feature fusion (GFF) takes acoustic features of different scales as input to aggregate global signal. |
|
ERes2Net-huge is an upgraded version of ERes2Net that uses a larger number of parameters to achieve better |
|
recognition performance. Parameters expansion, baseWidth, and scale can be modified to obtain optimal performance. |
|
""" |
|
|
|
import torch |
|
import math |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import pooling_layers as pooling_layers |
|
from fusion import AFF |
|
|
|
|
|
class ReLU(nn.Hardtanh): |
|
def __init__(self, inplace=False): |
|
super(ReLU, self).__init__(0, 20, inplace) |
|
|
|
def __repr__(self): |
|
inplace_str = "inplace" if self.inplace else "" |
|
return self.__class__.__name__ + " (" + inplace_str + ")" |
|
|
|
|
|
class BasicBlockERes2Net(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, in_planes, planes, stride=1, baseWidth=24, scale=3): |
|
super(BasicBlockERes2Net, self).__init__() |
|
width = int(math.floor(planes * (baseWidth / 64.0))) |
|
self.conv1 = nn.Conv2d(in_planes, width * scale, kernel_size=1, stride=stride, bias=False) |
|
self.bn1 = nn.BatchNorm2d(width * scale) |
|
self.nums = scale |
|
|
|
convs = [] |
|
bns = [] |
|
for i in range(self.nums): |
|
convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False)) |
|
bns.append(nn.BatchNorm2d(width)) |
|
self.convs = nn.ModuleList(convs) |
|
self.bns = nn.ModuleList(bns) |
|
self.relu = ReLU(inplace=True) |
|
|
|
self.conv3 = nn.Conv2d(width * scale, planes * self.expansion, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion * planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(self.expansion * planes), |
|
) |
|
self.stride = stride |
|
self.width = width |
|
self.scale = scale |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
spx = torch.split(out, self.width, 1) |
|
for i in range(self.nums): |
|
if i == 0: |
|
sp = spx[i] |
|
else: |
|
sp = sp + spx[i] |
|
sp = self.convs[i](sp) |
|
sp = self.relu(self.bns[i](sp)) |
|
if i == 0: |
|
out = sp |
|
else: |
|
out = torch.cat((out, sp), 1) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
residual = self.shortcut(x) |
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class BasicBlockERes2Net_diff_AFF(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, in_planes, planes, stride=1, baseWidth=24, scale=3): |
|
super(BasicBlockERes2Net_diff_AFF, self).__init__() |
|
width = int(math.floor(planes * (baseWidth / 64.0))) |
|
self.conv1 = nn.Conv2d(in_planes, width * scale, kernel_size=1, stride=stride, bias=False) |
|
self.bn1 = nn.BatchNorm2d(width * scale) |
|
self.nums = scale |
|
|
|
convs = [] |
|
fuse_models = [] |
|
bns = [] |
|
for i in range(self.nums): |
|
convs.append(nn.Conv2d(width, width, kernel_size=3, padding=1, bias=False)) |
|
bns.append(nn.BatchNorm2d(width)) |
|
for j in range(self.nums - 1): |
|
fuse_models.append(AFF(channels=width)) |
|
|
|
self.convs = nn.ModuleList(convs) |
|
self.bns = nn.ModuleList(bns) |
|
self.fuse_models = nn.ModuleList(fuse_models) |
|
self.relu = ReLU(inplace=True) |
|
|
|
self.conv3 = nn.Conv2d(width * scale, planes * self.expansion, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion * planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(self.expansion * planes), |
|
) |
|
self.stride = stride |
|
self.width = width |
|
self.scale = scale |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
spx = torch.split(out, self.width, 1) |
|
for i in range(self.nums): |
|
if i == 0: |
|
sp = spx[i] |
|
else: |
|
sp = self.fuse_models[i - 1](sp, spx[i]) |
|
|
|
sp = self.convs[i](sp) |
|
sp = self.relu(self.bns[i](sp)) |
|
if i == 0: |
|
out = sp |
|
else: |
|
out = torch.cat((out, sp), 1) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
residual = self.shortcut(x) |
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ERes2Net(nn.Module): |
|
def __init__( |
|
self, |
|
block=BasicBlockERes2Net, |
|
block_fuse=BasicBlockERes2Net_diff_AFF, |
|
num_blocks=[3, 4, 6, 3], |
|
m_channels=64, |
|
feat_dim=80, |
|
embedding_size=192, |
|
pooling_func="TSTP", |
|
two_emb_layer=False, |
|
): |
|
super(ERes2Net, self).__init__() |
|
self.in_planes = m_channels |
|
self.feat_dim = feat_dim |
|
self.embedding_size = embedding_size |
|
self.stats_dim = int(feat_dim / 8) * m_channels * 8 |
|
self.two_emb_layer = two_emb_layer |
|
|
|
self.conv1 = nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(m_channels) |
|
|
|
self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=1) |
|
self.layer2 = self._make_layer(block, m_channels * 2, num_blocks[1], stride=2) |
|
self.layer3 = self._make_layer(block_fuse, m_channels * 4, num_blocks[2], stride=2) |
|
self.layer4 = self._make_layer(block_fuse, m_channels * 8, num_blocks[3], stride=2) |
|
|
|
self.layer1_downsample = nn.Conv2d( |
|
m_channels * 4, m_channels * 8, kernel_size=3, padding=1, stride=2, bias=False |
|
) |
|
self.layer2_downsample = nn.Conv2d( |
|
m_channels * 8, m_channels * 16, kernel_size=3, padding=1, stride=2, bias=False |
|
) |
|
self.layer3_downsample = nn.Conv2d( |
|
m_channels * 16, m_channels * 32, kernel_size=3, padding=1, stride=2, bias=False |
|
) |
|
|
|
self.fuse_mode12 = AFF(channels=m_channels * 8) |
|
self.fuse_mode123 = AFF(channels=m_channels * 16) |
|
self.fuse_mode1234 = AFF(channels=m_channels * 32) |
|
|
|
self.n_stats = 1 if pooling_func == "TAP" or pooling_func == "TSDP" else 2 |
|
self.pool = getattr(pooling_layers, pooling_func)(in_dim=self.stats_dim * block.expansion) |
|
self.seg_1 = nn.Linear(self.stats_dim * block.expansion * self.n_stats, embedding_size) |
|
if self.two_emb_layer: |
|
self.seg_bn_1 = nn.BatchNorm1d(embedding_size, affine=False) |
|
self.seg_2 = nn.Linear(embedding_size, embedding_size) |
|
else: |
|
self.seg_bn_1 = nn.Identity() |
|
self.seg_2 = nn.Identity() |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1] * (num_blocks - 1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = x.permute(0, 2, 1) |
|
|
|
x = x.unsqueeze_(1) |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out1 = self.layer1(out) |
|
out2 = self.layer2(out1) |
|
out1_downsample = self.layer1_downsample(out1) |
|
fuse_out12 = self.fuse_mode12(out2, out1_downsample) |
|
out3 = self.layer3(out2) |
|
fuse_out12_downsample = self.layer2_downsample(fuse_out12) |
|
fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample) |
|
out4 = self.layer4(out3) |
|
fuse_out123_downsample = self.layer3_downsample(fuse_out123) |
|
fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample) |
|
stats = self.pool(fuse_out1234) |
|
|
|
embed_a = self.seg_1(stats) |
|
if self.two_emb_layer: |
|
out = F.relu(embed_a) |
|
out = self.seg_bn_1(out) |
|
embed_b = self.seg_2(out) |
|
return embed_b |
|
else: |
|
return embed_a |
|
|
|
def forward2(self, x, if_mean): |
|
x = x.permute(0, 2, 1) |
|
|
|
x = x.unsqueeze_(1) |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out1 = self.layer1(out) |
|
out2 = self.layer2(out1) |
|
out1_downsample = self.layer1_downsample(out1) |
|
fuse_out12 = self.fuse_mode12(out2, out1_downsample) |
|
out3 = self.layer3(out2) |
|
fuse_out12_downsample = self.layer2_downsample(fuse_out12) |
|
fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample) |
|
out4 = self.layer4(out3) |
|
fuse_out123_downsample = self.layer3_downsample(fuse_out123) |
|
fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample).flatten(start_dim=1, end_dim=2) |
|
if if_mean == False: |
|
mean = fuse_out1234[0].transpose(1, 0) |
|
else: |
|
mean = fuse_out1234.mean(2) |
|
mean_std = torch.cat([mean, torch.zeros_like(mean)], 1) |
|
return self.seg_1(mean_std) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward3(self, x): |
|
x = x.permute(0, 2, 1) |
|
|
|
x = x.unsqueeze_(1) |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out1 = self.layer1(out) |
|
out2 = self.layer2(out1) |
|
out1_downsample = self.layer1_downsample(out1) |
|
fuse_out12 = self.fuse_mode12(out2, out1_downsample) |
|
out3 = self.layer3(out2) |
|
fuse_out12_downsample = self.layer2_downsample(fuse_out12) |
|
fuse_out123 = self.fuse_mode123(out3, fuse_out12_downsample) |
|
out4 = self.layer4(out3) |
|
fuse_out123_downsample = self.layer3_downsample(fuse_out123) |
|
fuse_out1234 = self.fuse_mode1234(out4, fuse_out123_downsample).flatten(start_dim=1, end_dim=2).mean(-1) |
|
return fuse_out1234 |
|
|
|
|
|
|
|
|