kemuriririn's picture
update
622b6ed
import gc
import math
import os
import random
import sys
import time
import traceback
from copy import deepcopy
import torchaudio
from tqdm import tqdm
now_dir = os.getcwd()
sys.path.append(now_dir)
import os
from typing import List, Tuple, Union
import ffmpeg
import librosa
import numpy as np
import torch
import torch.nn.functional as F
import yaml
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from BigVGAN.bigvgan import BigVGAN
from feature_extractor.cnhubert import CNHubert
from module.mel_processing import mel_spectrogram_torch, spectrogram_torch
from module.models import SynthesizerTrn, SynthesizerTrnV3, Generator
from peft import LoraConfig, get_peft_model
from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new
from transformers import AutoModelForMaskedLM, AutoTokenizer
from tools.audio_sr import AP_BWE
from tools.i18n.i18n import I18nAuto, scan_language_list
from TTS_infer_pack.text_segmentation_method import splits
from TTS_infer_pack.TextPreprocessor import TextPreprocessor
from sv import SV
resample_transform_dict = {}
def resample(audio_tensor, sr0, sr1, device):
global resample_transform_dict
key = "%s-%s-%s" % (sr0, sr1, str(device))
if key not in resample_transform_dict:
resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(device)
return resample_transform_dict[key](audio_tensor)
language = os.environ.get("language", "Auto")
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
i18n = I18nAuto(language=language)
spec_min = -12
spec_max = 2
def norm_spec(x):
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
def denorm_spec(x):
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
mel_fn = lambda x: mel_spectrogram_torch(
x,
**{
"n_fft": 1024,
"win_size": 1024,
"hop_size": 256,
"num_mels": 100,
"sampling_rate": 24000,
"fmin": 0,
"fmax": None,
"center": False,
},
)
mel_fn_v4 = lambda x: mel_spectrogram_torch(
x,
**{
"n_fft": 1280,
"win_size": 1280,
"hop_size": 320,
"num_mels": 100,
"sampling_rate": 32000,
"fmin": 0,
"fmax": None,
"center": False,
},
)
def speed_change(input_audio: np.ndarray, speed: float, sr: int):
# 将 NumPy 数组转换为原始 PCM 流
raw_audio = input_audio.astype(np.int16).tobytes()
# 设置 ffmpeg 输入流
input_stream = ffmpeg.input("pipe:", format="s16le", acodec="pcm_s16le", ar=str(sr), ac=1)
# 变速处理
output_stream = input_stream.filter("atempo", speed)
# 输出流到管道
out, _ = output_stream.output("pipe:", format="s16le", acodec="pcm_s16le").run(
input=raw_audio, capture_stdout=True, capture_stderr=True
)
# 将管道输出解码为 NumPy 数组
processed_audio = np.frombuffer(out, np.int16)
return processed_audio
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
class NO_PROMPT_ERROR(Exception):
pass
# configs/tts_infer.yaml
"""
custom:
bert_base_path: pretrained_models/chinese-roberta-wwm-ext-large
cnhuhbert_base_path: pretrained_models/chinese-hubert-base
device: cpu
is_half: false
t2s_weights_path: pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
vits_weights_path: pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
version: v2
v1:
bert_base_path: pretrained_models/chinese-roberta-wwm-ext-large
cnhuhbert_base_path: pretrained_models/chinese-hubert-base
device: cpu
is_half: false
t2s_weights_path: pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
vits_weights_path: pretrained_models/s2G488k.pth
version: v1
v2:
bert_base_path: pretrained_models/chinese-roberta-wwm-ext-large
cnhuhbert_base_path: pretrained_models/chinese-hubert-base
device: cpu
is_half: false
t2s_weights_path: pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
vits_weights_path: pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
version: v2
v3:
bert_base_path: pretrained_models/chinese-roberta-wwm-ext-large
cnhuhbert_base_path: pretrained_models/chinese-hubert-base
device: cpu
is_half: false
t2s_weights_path: pretrained_models/s1v3.ckpt
vits_weights_path: pretrained_models/s2Gv3.pth
version: v3
v4:
bert_base_path: pretrained_models/chinese-roberta-wwm-ext-large
cnhuhbert_base_path: pretrained_models/chinese-hubert-base
device: cpu
is_half: false
t2s_weights_path: pretrained_models/s1v3.ckpt
version: v4
vits_weights_path: pretrained_models/gsv-v4-pretrained/s2Gv4.pth
"""
def set_seed(seed: int):
seed = int(seed)
seed = seed if seed != -1 else random.randint(0, 2**32 - 1)
print(f"Set seed to {seed}")
os.environ["PYTHONHASHSEED"] = str(seed)
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
try:
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
# torch.backends.cudnn.enabled = True
# 开启后会影响精度
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
except:
pass
return seed
class TTS_Config:
default_configs = {
"v1": {
"device": "cpu",
"is_half": False,
"version": "v1",
"t2s_weights_path": "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
"vits_weights_path": "pretrained_models/s2G488k.pth",
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
},
"v2": {
"device": "cpu",
"is_half": False,
"version": "v2",
"t2s_weights_path": "pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
"vits_weights_path": "pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
},
"v3": {
"device": "cpu",
"is_half": False,
"version": "v3",
"t2s_weights_path": "pretrained_models/s1v3.ckpt",
"vits_weights_path": "pretrained_models/s2Gv3.pth",
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
},
"v4": {
"device": "cpu",
"is_half": False,
"version": "v4",
"t2s_weights_path": "pretrained_models/s1v3.ckpt",
"vits_weights_path": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
},
"v2Pro": {
"device": "cpu",
"is_half": False,
"version": "v2Pro",
"t2s_weights_path": "pretrained_models/s1v3.ckpt",
"vits_weights_path": "pretrained_models/v2Pro/s2Gv2Pro.pth",
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
},
"v2ProPlus": {
"device": "cpu",
"is_half": False,
"version": "v2ProPlus",
"t2s_weights_path": "pretrained_models/s1v3.ckpt",
"vits_weights_path": "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
},
}
configs: dict = None
v1_languages: list = ["auto", "en", "zh", "ja", "all_zh", "all_ja"]
v2_languages: list = ["auto", "auto_yue", "en", "zh", "ja", "yue", "ko", "all_zh", "all_ja", "all_yue", "all_ko"]
languages: list = v2_languages
# "all_zh",#全部按中文识别
# "en",#全部按英文识别#######不变
# "all_ja",#全部按日文识别
# "all_yue",#全部按中文识别
# "all_ko",#全部按韩文识别
# "zh",#按中英混合识别####不变
# "ja",#按日英混合识别####不变
# "yue",#按粤英混合识别####不变
# "ko",#按韩英混合识别####不变
# "auto",#多语种启动切分识别语种
# "auto_yue",#多语种启动切分识别语种
def __init__(self, configs: Union[dict, str] = None):
# 设置默认配置文件路径
configs_base_path: str = "configs/"
os.makedirs(configs_base_path, exist_ok=True)
self.configs_path: str = os.path.join(configs_base_path, "tts_infer.yaml")
if configs in ["", None]:
if not os.path.exists(self.configs_path):
self.save_configs()
print(f"Create default config file at {self.configs_path}")
configs: dict = deepcopy(self.default_configs)
if isinstance(configs, str):
self.configs_path = configs
configs: dict = self._load_configs(self.configs_path)
assert isinstance(configs, dict)
version = configs.get("version", "v2").lower()
assert version in ["v1", "v2", "v3", "v4", "v2Pro", "v2ProPlus"]
self.default_configs[version] = configs.get(version, self.default_configs[version])
self.configs: dict = configs.get("custom", deepcopy(self.default_configs[version]))
self.device = self.configs.get("device", torch.device("cpu"))
if "cuda" in str(self.device) and not torch.cuda.is_available():
print("Warning: CUDA is not available, set device to CPU.")
self.device = torch.device("cpu")
self.is_half = self.configs.get("is_half", False)
# if str(self.device) == "cpu" and self.is_half:
# print(f"Warning: Half precision is not supported on CPU, set is_half to False.")
# self.is_half = False
self.version = version
self.t2s_weights_path = self.configs.get("t2s_weights_path", None)
self.vits_weights_path = self.configs.get("vits_weights_path", None)
self.bert_base_path = self.configs.get("bert_base_path", None)
self.cnhuhbert_base_path = self.configs.get("cnhuhbert_base_path", None)
self.languages = self.v1_languages if self.version == "v1" else self.v2_languages
self.use_vocoder: bool = False
if (self.t2s_weights_path in [None, ""]) or (not os.path.exists(self.t2s_weights_path)):
self.t2s_weights_path = self.default_configs[version]["t2s_weights_path"]
print(f"fall back to default t2s_weights_path: {self.t2s_weights_path}")
if (self.vits_weights_path in [None, ""]) or (not os.path.exists(self.vits_weights_path)):
self.vits_weights_path = self.default_configs[version]["vits_weights_path"]
print(f"fall back to default vits_weights_path: {self.vits_weights_path}")
if (self.bert_base_path in [None, ""]) or (not os.path.exists(self.bert_base_path)):
self.bert_base_path = self.default_configs[version]["bert_base_path"]
print(f"fall back to default bert_base_path: {self.bert_base_path}")
if (self.cnhuhbert_base_path in [None, ""]) or (not os.path.exists(self.cnhuhbert_base_path)):
self.cnhuhbert_base_path = self.default_configs[version]["cnhuhbert_base_path"]
print(f"fall back to default cnhuhbert_base_path: {self.cnhuhbert_base_path}")
self.update_configs()
self.max_sec = None
self.hz: int = 50
self.semantic_frame_rate: str = "25hz"
self.segment_size: int = 20480
self.filter_length: int = 2048
self.sampling_rate: int = 32000
self.hop_length: int = 640
self.win_length: int = 2048
self.n_speakers: int = 300
def _load_configs(self, configs_path: str) -> dict:
if os.path.exists(configs_path):
...
else:
print(i18n("路径不存在,使用默认配置"))
self.save_configs(configs_path)
with open(configs_path, "r", encoding="utf-8") as f:
configs = yaml.load(f, Loader=yaml.FullLoader)
return configs
def save_configs(self, configs_path: str = None) -> None:
configs = deepcopy(self.default_configs)
if self.configs is not None:
configs["custom"] = self.update_configs()
if configs_path is None:
configs_path = self.configs_path
with open(configs_path, "w") as f:
yaml.dump(configs, f)
def update_configs(self):
self.config = {
"device": str(self.device),
"is_half": self.is_half,
"version": self.version,
"t2s_weights_path": self.t2s_weights_path,
"vits_weights_path": self.vits_weights_path,
"bert_base_path": self.bert_base_path,
"cnhuhbert_base_path": self.cnhuhbert_base_path,
}
return self.config
def update_version(self, version: str) -> None:
self.version = version
self.languages = self.v1_languages if self.version == "v1" else self.v2_languages
def __str__(self):
self.configs = self.update_configs()
string = "TTS Config".center(100, "-") + "\n"
for k, v in self.configs.items():
string += f"{str(k).ljust(20)}: {str(v)}\n"
string += "-" * 100 + "\n"
return string
def __repr__(self):
return self.__str__()
def __hash__(self):
return hash(self.configs_path)
def __eq__(self, other):
return isinstance(other, TTS_Config) and self.configs_path == other.configs_path
class TTS:
def __init__(self, configs: Union[dict, str, TTS_Config]):
if isinstance(configs, TTS_Config):
self.configs = configs
else:
self.configs: TTS_Config = TTS_Config(configs)
self.t2s_model: Text2SemanticLightningModule = None
self.vits_model: Union[SynthesizerTrn, SynthesizerTrnV3] = None
self.bert_tokenizer: AutoTokenizer = None
self.bert_model: AutoModelForMaskedLM = None
self.cnhuhbert_model: CNHubert = None
self.vocoder = None
self.sr_model: AP_BWE = None
self.sv_model = None
self.sr_model_not_exist: bool = False
self.vocoder_configs: dict = {
"sr": None,
"T_ref": None,
"T_chunk": None,
"upsample_rate": None,
"overlapped_len": None,
}
self._init_models()
self.text_preprocessor: TextPreprocessor = TextPreprocessor(
self.bert_model, self.bert_tokenizer, self.configs.device
)
self.prompt_cache: dict = {
"ref_audio_path": None,
"prompt_semantic": None,
"refer_spec": [],
"prompt_text": None,
"prompt_lang": None,
"phones": None,
"bert_features": None,
"norm_text": None,
"aux_ref_audio_paths": [],
}
self.stop_flag: bool = False
self.precision: torch.dtype = torch.float16 if self.configs.is_half else torch.float32
def _init_models(
self,
):
self.init_t2s_weights(self.configs.t2s_weights_path)
self.init_vits_weights(self.configs.vits_weights_path)
self.init_bert_weights(self.configs.bert_base_path)
self.init_cnhuhbert_weights(self.configs.cnhuhbert_base_path)
# self.enable_half_precision(self.configs.is_half)
def init_cnhuhbert_weights(self, base_path: str):
print(f"Loading CNHuBERT weights from {base_path}")
self.cnhuhbert_model = CNHubert(base_path)
self.cnhuhbert_model = self.cnhuhbert_model.eval()
self.cnhuhbert_model = self.cnhuhbert_model.to(self.configs.device)
if self.configs.is_half and str(self.configs.device) != "cpu":
self.cnhuhbert_model = self.cnhuhbert_model.half()
def init_bert_weights(self, base_path: str):
print(f"Loading BERT weights from {base_path}")
self.bert_tokenizer = AutoTokenizer.from_pretrained(base_path)
self.bert_model = AutoModelForMaskedLM.from_pretrained(base_path)
self.bert_model = self.bert_model.eval()
self.bert_model = self.bert_model.to(self.configs.device)
if self.configs.is_half and str(self.configs.device) != "cpu":
self.bert_model = self.bert_model.half()
def init_vits_weights(self, weights_path: str):
self.configs.vits_weights_path = weights_path
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(weights_path)
if "Pro" in model_version:
self.init_sv_model()
path_sovits = self.configs.default_configs[model_version]["vits_weights_path"]
if if_lora_v3 == True and os.path.exists(path_sovits) == False:
info = path_sovits + i18n("SoVITS %s 底模缺失,无法加载相应 LoRA 权重" % model_version)
raise FileExistsError(info)
# dict_s2 = torch.load(weights_path, map_location=self.configs.device,weights_only=False)
dict_s2 = load_sovits_new(weights_path)
hps = dict_s2["config"]
hps["model"]["semantic_frame_rate"] = "25hz"
if "enc_p.text_embedding.weight" not in dict_s2["weight"]:
hps["model"]["version"] = "v2" # v3model,v2sybomls
elif dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322:
hps["model"]["version"] = "v1"
else:
hps["model"]["version"] = "v2"
version = hps["model"]["version"]
v3v4set = {"v3", "v4"}
if model_version not in v3v4set:
if "Pro" not in model_version:
model_version = version
else:
hps["model"]["version"] = model_version
else:
hps["model"]["version"] = model_version
self.configs.filter_length = hps["data"]["filter_length"]
self.configs.segment_size = hps["train"]["segment_size"]
self.configs.sampling_rate = hps["data"]["sampling_rate"]
self.configs.hop_length = hps["data"]["hop_length"]
self.configs.win_length = hps["data"]["win_length"]
self.configs.n_speakers = hps["data"]["n_speakers"]
self.configs.semantic_frame_rate = hps["model"]["semantic_frame_rate"]
kwargs = hps["model"]
# print(f"self.configs.sampling_rate:{self.configs.sampling_rate}")
self.configs.update_version(model_version)
# print(f"model_version:{model_version}")
# print(f'hps["model"]["version"]:{hps["model"]["version"]}')
if model_version not in v3v4set:
vits_model = SynthesizerTrn(
self.configs.filter_length // 2 + 1,
self.configs.segment_size // self.configs.hop_length,
n_speakers=self.configs.n_speakers,
**kwargs,
)
self.configs.use_vocoder = False
else:
kwargs["version"] = model_version
vits_model = SynthesizerTrnV3(
self.configs.filter_length // 2 + 1,
self.configs.segment_size // self.configs.hop_length,
n_speakers=self.configs.n_speakers,
**kwargs,
)
self.configs.use_vocoder = True
self.init_vocoder(model_version)
if "pretrained" not in weights_path and hasattr(vits_model, "enc_q"):
del vits_model.enc_q
self.is_v2pro = model_version in {"v2Pro", "v2ProPlus"}
if if_lora_v3 == False:
print(
f"Loading VITS weights from {weights_path}. {vits_model.load_state_dict(dict_s2['weight'], strict=False)}"
)
else:
print(
f"Loading VITS pretrained weights from {weights_path}. {vits_model.load_state_dict(load_sovits_new(path_sovits)['weight'], strict=False)}"
)
lora_rank = dict_s2["lora_rank"]
lora_config = LoraConfig(
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
r=lora_rank,
lora_alpha=lora_rank,
init_lora_weights=True,
)
vits_model.cfm = get_peft_model(vits_model.cfm, lora_config)
print(
f"Loading LoRA weights from {weights_path}. {vits_model.load_state_dict(dict_s2['weight'], strict=False)}"
)
vits_model.cfm = vits_model.cfm.merge_and_unload()
vits_model = vits_model.to(self.configs.device)
vits_model = vits_model.eval()
self.vits_model = vits_model
if self.configs.is_half and str(self.configs.device) != "cpu":
self.vits_model = self.vits_model.half()
def init_t2s_weights(self, weights_path: str):
print(f"Loading Text2Semantic weights from {weights_path}")
self.configs.t2s_weights_path = weights_path
self.configs.save_configs()
self.configs.hz = 50
dict_s1 = torch.load(weights_path, map_location=self.configs.device, weights_only=False)
config = dict_s1["config"]
self.configs.max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
t2s_model = t2s_model.to(self.configs.device)
t2s_model = t2s_model.eval()
self.t2s_model = t2s_model
if self.configs.is_half and str(self.configs.device) != "cpu":
self.t2s_model = self.t2s_model.half()
def init_vocoder(self, version: str):
if version == "v3":
if self.vocoder is not None and self.vocoder.__class__.__name__ == "BigVGAN":
return
if self.vocoder is not None:
self.vocoder.cpu()
del self.vocoder
self.empty_cache()
self.vocoder = BigVGAN.from_pretrained(
"%s/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
use_cuda_kernel=False,
) # if True, RuntimeError: Ninja is required to load C++ extensions
# remove weight norm in the model and set to eval mode
self.vocoder.remove_weight_norm()
self.vocoder_configs["sr"] = 24000
self.vocoder_configs["T_ref"] = 468
self.vocoder_configs["T_chunk"] = 934
self.vocoder_configs["upsample_rate"] = 256
self.vocoder_configs["overlapped_len"] = 12
elif version == "v4":
if self.vocoder is not None and self.vocoder.__class__.__name__ == "Generator":
return
if self.vocoder is not None:
self.vocoder.cpu()
del self.vocoder
self.empty_cache()
self.vocoder = Generator(
initial_channel=100,
resblock="1",
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_rates=[10, 6, 2, 2, 2],
upsample_initial_channel=512,
upsample_kernel_sizes=[20, 12, 4, 4, 4],
gin_channels=0,
is_bias=True,
)
self.vocoder.remove_weight_norm()
state_dict_g = torch.load(
"%s/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,),
map_location="cpu",
weights_only=False,
)
print("loading vocoder", self.vocoder.load_state_dict(state_dict_g))
self.vocoder_configs["sr"] = 48000
self.vocoder_configs["T_ref"] = 500
self.vocoder_configs["T_chunk"] = 1000
self.vocoder_configs["upsample_rate"] = 480
self.vocoder_configs["overlapped_len"] = 12
self.vocoder = self.vocoder.eval()
if self.configs.is_half == True:
self.vocoder = self.vocoder.half().to(self.configs.device)
else:
self.vocoder = self.vocoder.to(self.configs.device)
def init_sr_model(self):
if self.sr_model is not None:
return
try:
self.sr_model: AP_BWE = AP_BWE(self.configs.device, DictToAttrRecursive)
self.sr_model_not_exist = False
except FileNotFoundError:
print(i18n("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载好"))
self.sr_model_not_exist = True
def init_sv_model(self):
if self.sv_model is not None:
return
self.sv_model = SV(self.configs.device, self.configs.is_half)
def enable_half_precision(self, enable: bool = True, save: bool = True):
"""
To enable half precision for the TTS model.
Args:
enable: bool, whether to enable half precision.
"""
if str(self.configs.device) == "cpu" and enable:
print("Half precision is not supported on CPU.")
return
self.configs.is_half = enable
self.precision = torch.float16 if enable else torch.float32
if save:
self.configs.save_configs()
if enable:
if self.t2s_model is not None:
self.t2s_model = self.t2s_model.half()
if self.vits_model is not None:
self.vits_model = self.vits_model.half()
if self.bert_model is not None:
self.bert_model = self.bert_model.half()
if self.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.half()
if self.vocoder is not None:
self.vocoder = self.vocoder.half()
else:
if self.t2s_model is not None:
self.t2s_model = self.t2s_model.float()
if self.vits_model is not None:
self.vits_model = self.vits_model.float()
if self.bert_model is not None:
self.bert_model = self.bert_model.float()
if self.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.float()
if self.vocoder is not None:
self.vocoder = self.vocoder.float()
def set_device(self, device: torch.device, save: bool = True):
"""
To set the device for all models.
Args:
device: torch.device, the device to use for all models.
"""
self.configs.device = device
if save:
self.configs.save_configs()
if self.t2s_model is not None:
self.t2s_model = self.t2s_model.to(device)
if self.vits_model is not None:
self.vits_model = self.vits_model.to(device)
if self.bert_model is not None:
self.bert_model = self.bert_model.to(device)
if self.cnhuhbert_model is not None:
self.cnhuhbert_model = self.cnhuhbert_model.to(device)
if self.vocoder is not None:
self.vocoder = self.vocoder.to(device)
if self.sr_model is not None:
self.sr_model = self.sr_model.to(device)
def set_ref_audio(self, ref_audio_path: str):
"""
To set the reference audio for the TTS model,
including the prompt_semantic and refer_spepc.
Args:
ref_audio_path: str, the path of the reference audio.
"""
self._set_prompt_semantic(ref_audio_path)
self._set_ref_spec(ref_audio_path)
self._set_ref_audio_path(ref_audio_path)
def _set_ref_audio_path(self, ref_audio_path):
self.prompt_cache["ref_audio_path"] = ref_audio_path
def _set_ref_spec(self, ref_audio_path):
spec_audio = self._get_ref_spec(ref_audio_path)
if self.prompt_cache["refer_spec"] in [[], None]:
self.prompt_cache["refer_spec"] = [spec_audio]
else:
self.prompt_cache["refer_spec"][0] = spec_audio
def _get_ref_spec(self, ref_audio_path):
raw_audio, raw_sr = torchaudio.load(ref_audio_path)
raw_audio = raw_audio.to(self.configs.device).float()
self.prompt_cache["raw_audio"] = raw_audio
self.prompt_cache["raw_sr"] = raw_sr
if raw_sr != self.configs.sampling_rate:
audio = raw_audio.to(self.configs.device)
if audio.shape[0] == 2:
audio = audio.mean(0).unsqueeze(0)
audio = resample(audio, raw_sr, self.configs.sampling_rate, self.configs.device)
else:
audio = raw_audio.to(self.configs.device)
if audio.shape[0] == 2:
audio = audio.mean(0).unsqueeze(0)
maxx = audio.abs().max()
if maxx > 1:
audio /= min(2, maxx)
spec = spectrogram_torch(
audio,
self.configs.filter_length,
self.configs.sampling_rate,
self.configs.hop_length,
self.configs.win_length,
center=False,
)
if self.configs.is_half:
spec = spec.half()
if self.is_v2pro == True:
audio = resample(audio, self.configs.sampling_rate, 16000, self.configs.device)
if self.configs.is_half:
audio = audio.half()
else:
audio = None
return spec, audio
def _set_prompt_semantic(self, ref_wav_path: str):
zero_wav = np.zeros(
int(self.configs.sampling_rate * 0.3),
dtype=np.float16 if self.configs.is_half else np.float32,
)
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000:
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
wav16k = wav16k.to(self.configs.device)
zero_wav_torch = zero_wav_torch.to(self.configs.device)
if self.configs.is_half:
wav16k = wav16k.half()
zero_wav_torch = zero_wav_torch.half()
wav16k = torch.cat([wav16k, zero_wav_torch])
hubert_feature = self.cnhuhbert_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(
1, 2
) # .float()
codes = self.vits_model.extract_latent(hubert_feature)
prompt_semantic = codes[0, 0].to(self.configs.device)
self.prompt_cache["prompt_semantic"] = prompt_semantic
def batch_sequences(self, sequences: List[torch.Tensor], axis: int = 0, pad_value: int = 0, max_length: int = None):
seq = sequences[0]
ndim = seq.dim()
if axis < 0:
axis += ndim
dtype: torch.dtype = seq.dtype
pad_value = torch.tensor(pad_value, dtype=dtype)
seq_lengths = [seq.shape[axis] for seq in sequences]
if max_length is None:
max_length = max(seq_lengths)
else:
max_length = max(seq_lengths) if max_length < max(seq_lengths) else max_length
padded_sequences = []
for seq, length in zip(sequences, seq_lengths):
padding = [0] * axis + [0, max_length - length] + [0] * (ndim - axis - 1)
padded_seq = torch.nn.functional.pad(seq, padding, value=pad_value)
padded_sequences.append(padded_seq)
batch = torch.stack(padded_sequences)
return batch
def to_batch(
self,
data: list,
prompt_data: dict = None,
batch_size: int = 5,
threshold: float = 0.75,
split_bucket: bool = True,
device: torch.device = torch.device("cpu"),
precision: torch.dtype = torch.float32,
):
_data: list = []
index_and_len_list = []
for idx, item in enumerate(data):
norm_text_len = len(item["norm_text"])
index_and_len_list.append([idx, norm_text_len])
batch_index_list = []
if split_bucket:
index_and_len_list.sort(key=lambda x: x[1])
index_and_len_list = np.array(index_and_len_list, dtype=np.int64)
batch_index_list_len = 0
pos = 0
while pos < index_and_len_list.shape[0]:
# batch_index_list.append(index_and_len_list[pos:min(pos+batch_size,len(index_and_len_list))])
pos_end = min(pos + batch_size, index_and_len_list.shape[0])
while pos < pos_end:
batch = index_and_len_list[pos:pos_end, 1].astype(np.float32)
score = batch[(pos_end - pos) // 2] / (batch.mean() + 1e-8)
if (score >= threshold) or (pos_end - pos == 1):
batch_index = index_and_len_list[pos:pos_end, 0].tolist()
batch_index_list_len += len(batch_index)
batch_index_list.append(batch_index)
pos = pos_end
break
pos_end = pos_end - 1
assert batch_index_list_len == len(data)
else:
for i in range(len(data)):
if i % batch_size == 0:
batch_index_list.append([])
batch_index_list[-1].append(i)
for batch_idx, index_list in enumerate(batch_index_list):
item_list = [data[idx] for idx in index_list]
phones_list = []
phones_len_list = []
# bert_features_list = []
all_phones_list = []
all_phones_len_list = []
all_bert_features_list = []
norm_text_batch = []
all_bert_max_len = 0
all_phones_max_len = 0
for item in item_list:
if prompt_data is not None:
all_bert_features = torch.cat([prompt_data["bert_features"], item["bert_features"]], 1).to(
dtype=precision, device=device
)
all_phones = torch.LongTensor(prompt_data["phones"] + item["phones"]).to(device)
phones = torch.LongTensor(item["phones"]).to(device)
# norm_text = prompt_data["norm_text"]+item["norm_text"]
else:
all_bert_features = item["bert_features"].to(dtype=precision, device=device)
phones = torch.LongTensor(item["phones"]).to(device)
all_phones = phones
# norm_text = item["norm_text"]
all_bert_max_len = max(all_bert_max_len, all_bert_features.shape[-1])
all_phones_max_len = max(all_phones_max_len, all_phones.shape[-1])
phones_list.append(phones)
phones_len_list.append(phones.shape[-1])
all_phones_list.append(all_phones)
all_phones_len_list.append(all_phones.shape[-1])
all_bert_features_list.append(all_bert_features)
norm_text_batch.append(item["norm_text"])
phones_batch = phones_list
all_phones_batch = all_phones_list
all_bert_features_batch = all_bert_features_list
max_len = max(all_bert_max_len, all_phones_max_len)
# phones_batch = self.batch_sequences(phones_list, axis=0, pad_value=0, max_length=max_len)
#### 直接对phones和bert_features进行pad。(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
# all_phones_batch = self.batch_sequences(all_phones_list, axis=0, pad_value=0, max_length=max_len)
# all_bert_features_batch = all_bert_features_list
# all_bert_features_batch = torch.zeros((len(all_bert_features_list), 1024, max_len), dtype=precision, device=device)
# for idx, item in enumerate(all_bert_features_list):
# all_bert_features_batch[idx, :, : item.shape[-1]] = item
# #### 先对phones进行embedding、对bert_features进行project,再pad到相同长度,(padding策略会影响T2S模型生成的结果,但不直接影响复读概率。影响复读概率的主要因素是mask的策略)
# all_phones_list = [self.t2s_model.model.ar_text_embedding(item.to(self.t2s_model.device)) for item in all_phones_list]
# all_phones_list = [F.pad(item,(0,0,0,max_len-item.shape[0]),value=0) for item in all_phones_list]
# all_phones_batch = torch.stack(all_phones_list, dim=0)
# all_bert_features_list = [self.t2s_model.model.bert_proj(item.to(self.t2s_model.device).transpose(0, 1)) for item in all_bert_features_list]
# all_bert_features_list = [F.pad(item,(0,0,0,max_len-item.shape[0]), value=0) for item in all_bert_features_list]
# all_bert_features_batch = torch.stack(all_bert_features_list, dim=0)
batch = {
"phones": phones_batch,
"phones_len": torch.LongTensor(phones_len_list).to(device),
"all_phones": all_phones_batch,
"all_phones_len": torch.LongTensor(all_phones_len_list).to(device),
"all_bert_features": all_bert_features_batch,
"norm_text": norm_text_batch,
"max_len": max_len,
}
_data.append(batch)
return _data, batch_index_list
def recovery_order(self, data: list, batch_index_list: list) -> list:
"""
Recovery the order of the audio according to the batch_index_list.
Args:
data (List[list(torch.Tensor)]): the out of order audio .
batch_index_list (List[list[int]]): the batch index list.
Returns:
list (List[torch.Tensor]): the data in the original order.
"""
length = len(sum(batch_index_list, []))
_data = [None] * length
for i, index_list in enumerate(batch_index_list):
for j, index in enumerate(index_list):
_data[index] = data[i][j]
return _data
def stop(
self,
):
"""
Stop the inference process.
"""
self.stop_flag = True
@torch.no_grad()
def run(self, inputs: dict):
"""
Text to speech inference.
Args:
inputs (dict):
{
"text": "", # str.(required) text to be synthesized
"text_lang: "", # str.(required) language of the text to be synthesized
"ref_audio_path": "", # str.(required) reference audio path
"aux_ref_audio_paths": [], # list.(optional) auxiliary reference audio paths for multi-speaker tone fusion
"prompt_text": "", # str.(optional) prompt text for the reference audio
"prompt_lang": "", # str.(required) language of the prompt text for the reference audio
"top_k": 5, # int. top k sampling
"top_p": 1, # float. top p sampling
"temperature": 1, # float. temperature for sampling
"text_split_method": "cut0", # str. text split method, see text_segmentation_method.py for details.
"batch_size": 1, # int. batch size for inference
"batch_threshold": 0.75, # float. threshold for batch splitting.
"split_bucket: True, # bool. whether to split the batch into multiple buckets.
"return_fragment": False, # bool. step by step return the audio fragment.
"speed_factor":1.0, # float. control the speed of the synthesized audio.
"fragment_interval":0.3, # float. to control the interval of the audio fragment.
"seed": -1, # int. random seed for reproducibility.
"parallel_infer": True, # bool. whether to use parallel inference.
"repetition_penalty": 1.35 # float. repetition penalty for T2S model.
"sample_steps": 32, # int. number of sampling steps for VITS model V3.
"super_sampling": False, # bool. whether to use super-sampling for audio when using VITS model V3.
}
returns:
Tuple[int, np.ndarray]: sampling rate and audio data.
"""
########## variables initialization ###########
self.stop_flag: bool = False
text: str = inputs.get("text", "")
text_lang: str = inputs.get("text_lang", "")
ref_audio_path: str = inputs.get("ref_audio_path", "")
aux_ref_audio_paths: list = inputs.get("aux_ref_audio_paths", [])
prompt_text: str = inputs.get("prompt_text", "")
prompt_lang: str = inputs.get("prompt_lang", "")
top_k: int = inputs.get("top_k", 5)
top_p: float = inputs.get("top_p", 1)
temperature: float = inputs.get("temperature", 1)
text_split_method: str = inputs.get("text_split_method", "cut0")
batch_size = inputs.get("batch_size", 1)
batch_threshold = inputs.get("batch_threshold", 0.75)
speed_factor = inputs.get("speed_factor", 1.0)
split_bucket = inputs.get("split_bucket", True)
return_fragment = inputs.get("return_fragment", False)
fragment_interval = inputs.get("fragment_interval", 0.3)
seed = inputs.get("seed", -1)
seed = -1 if seed in ["", None] else seed
actual_seed = set_seed(seed)
parallel_infer = inputs.get("parallel_infer", True)
repetition_penalty = inputs.get("repetition_penalty", 1.35)
sample_steps = inputs.get("sample_steps", 32)
super_sampling = inputs.get("super_sampling", False)
if parallel_infer:
print(i18n("并行推理模式已开启"))
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_batch_infer
else:
print(i18n("并行推理模式已关闭"))
self.t2s_model.model.infer_panel = self.t2s_model.model.infer_panel_naive_batched
if return_fragment:
print(i18n("分段返回模式已开启"))
if split_bucket:
split_bucket = False
print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理"))
if split_bucket and speed_factor == 1.0 and not (self.configs.use_vocoder and parallel_infer):
print(i18n("分桶处理模式已开启"))
elif speed_factor != 1.0:
print(i18n("语速调节不支持分桶处理,已自动关闭分桶处理"))
split_bucket = False
elif self.configs.use_vocoder and parallel_infer:
print(i18n("当开启并行推理模式时,SoVits V3/4模型不支持分桶处理,已自动关闭分桶处理"))
split_bucket = False
else:
print(i18n("分桶处理模式已关闭"))
if fragment_interval < 0.01:
fragment_interval = 0.01
print(i18n("分段间隔过小,已自动设置为0.01"))
no_prompt_text = False
if prompt_text in [None, ""]:
no_prompt_text = True
assert text_lang in self.configs.languages
if not no_prompt_text:
assert prompt_lang in self.configs.languages
if no_prompt_text and self.configs.use_vocoder:
raise NO_PROMPT_ERROR("prompt_text cannot be empty when using SoVITS_V3")
if ref_audio_path in [None, ""] and (
(self.prompt_cache["prompt_semantic"] is None) or (self.prompt_cache["refer_spec"] in [None, []])
):
raise ValueError(
"ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()"
)
###### setting reference audio and prompt text preprocessing ########
t0 = time.perf_counter()
if (ref_audio_path is not None) and (
ref_audio_path != self.prompt_cache["ref_audio_path"]
or (self.is_v2pro and self.prompt_cache["refer_spec"][0][1] is None)
):
if not os.path.exists(ref_audio_path):
raise ValueError(f"{ref_audio_path} not exists")
self.set_ref_audio(ref_audio_path)
aux_ref_audio_paths = aux_ref_audio_paths if aux_ref_audio_paths is not None else []
paths = set(aux_ref_audio_paths) & set(self.prompt_cache["aux_ref_audio_paths"])
if not (len(list(paths)) == len(aux_ref_audio_paths) == len(self.prompt_cache["aux_ref_audio_paths"])):
self.prompt_cache["aux_ref_audio_paths"] = aux_ref_audio_paths
self.prompt_cache["refer_spec"] = [self.prompt_cache["refer_spec"][0]]
for path in aux_ref_audio_paths:
if path in [None, ""]:
continue
if not os.path.exists(path):
print(i18n("音频文件不存在,跳过:"), path)
continue
self.prompt_cache["refer_spec"].append(self._get_ref_spec(path))
if not no_prompt_text:
prompt_text = prompt_text.strip("\n")
if prompt_text[-1] not in splits:
prompt_text += "。" if prompt_lang != "en" else "."
print(i18n("实际输入的参考文本:"), prompt_text)
if self.prompt_cache["prompt_text"] != prompt_text:
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(
prompt_text, prompt_lang, self.configs.version
)
self.prompt_cache["prompt_text"] = prompt_text
self.prompt_cache["prompt_lang"] = prompt_lang
self.prompt_cache["phones"] = phones
self.prompt_cache["bert_features"] = bert_features
self.prompt_cache["norm_text"] = norm_text
###### text preprocessing ########
t1 = time.perf_counter()
data: list = None
if not return_fragment:
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method, self.configs.version)
if len(data) == 0:
yield 16000, np.zeros(int(16000), dtype=np.int16)
return
batch_index_list: list = None
data, batch_index_list = self.to_batch(
data,
prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size,
threshold=batch_threshold,
split_bucket=split_bucket,
device=self.configs.device,
precision=self.precision,
)
else:
print(f"############ {i18n('切分文本')} ############")
texts = self.text_preprocessor.pre_seg_text(text, text_lang, text_split_method)
data = []
for i in range(len(texts)):
if i % batch_size == 0:
data.append([])
data[-1].append(texts[i])
def make_batch(batch_texts):
batch_data = []
print(f"############ {i18n('提取文本Bert特征')} ############")
for text in tqdm(batch_texts):
phones, bert_features, norm_text = self.text_preprocessor.segment_and_extract_feature_for_text(
text, text_lang, self.configs.version
)
if phones is None:
continue
res = {
"phones": phones,
"bert_features": bert_features,
"norm_text": norm_text,
}
batch_data.append(res)
if len(batch_data) == 0:
return None
batch, _ = self.to_batch(
batch_data,
prompt_data=self.prompt_cache if not no_prompt_text else None,
batch_size=batch_size,
threshold=batch_threshold,
split_bucket=False,
device=self.configs.device,
precision=self.precision,
)
return batch[0]
t2 = time.perf_counter()
try:
print("############ 推理 ############")
###### inference ######
t_34 = 0.0
t_45 = 0.0
audio = []
output_sr = self.configs.sampling_rate if not self.configs.use_vocoder else self.vocoder_configs["sr"]
for item in data:
t3 = time.perf_counter()
if return_fragment:
item = make_batch(item)
if item is None:
continue
batch_phones: List[torch.LongTensor] = item["phones"]
# batch_phones:torch.LongTensor = item["phones"]
batch_phones_len: torch.LongTensor = item["phones_len"]
all_phoneme_ids: torch.LongTensor = item["all_phones"]
all_phoneme_lens: torch.LongTensor = item["all_phones_len"]
all_bert_features: torch.LongTensor = item["all_bert_features"]
norm_text: str = item["norm_text"]
max_len = item["max_len"]
print(i18n("前端处理后的文本(每句):"), norm_text)
if no_prompt_text:
prompt = None
else:
prompt = (
self.prompt_cache["prompt_semantic"].expand(len(all_phoneme_ids), -1).to(self.configs.device)
)
print(f"############ {i18n('预测语义Token')} ############")
pred_semantic_list, idx_list = self.t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_lens,
prompt,
all_bert_features,
# prompt_phone_len=ph_offset,
top_k=top_k,
top_p=top_p,
temperature=temperature,
early_stop_num=self.configs.hz * self.configs.max_sec,
max_len=max_len,
repetition_penalty=repetition_penalty,
)
t4 = time.perf_counter()
t_34 += t4 - t3
refer_audio_spec = []
if self.is_v2pro:
sv_emb = []
for spec, audio_tensor in self.prompt_cache["refer_spec"]:
spec = spec.to(dtype=self.precision, device=self.configs.device)
refer_audio_spec.append(spec)
if self.is_v2pro:
sv_emb.append(self.sv_model.compute_embedding3(audio_tensor))
batch_audio_fragment = []
# ## vits并行推理 method 1
# pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
# pred_semantic_len = torch.LongTensor([item.shape[0] for item in pred_semantic_list]).to(self.configs.device)
# pred_semantic = self.batch_sequences(pred_semantic_list, axis=0, pad_value=0).unsqueeze(0)
# max_len = 0
# for i in range(0, len(batch_phones)):
# max_len = max(max_len, batch_phones[i].shape[-1])
# batch_phones = self.batch_sequences(batch_phones, axis=0, pad_value=0, max_length=max_len)
# batch_phones = batch_phones.to(self.configs.device)
# batch_audio_fragment = (self.vits_model.batched_decode(
# pred_semantic, pred_semantic_len, batch_phones, batch_phones_len,refer_audio_spec
# ))
print(f"############ {i18n('合成音频')} ############")
if not self.configs.use_vocoder:
if speed_factor == 1.0:
print(f"{i18n('并行合成中')}...")
# ## vits并行推理 method 2
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
upsample_rate = math.prod(self.vits_model.upsample_rates)
audio_frag_idx = [
pred_semantic_list[i].shape[0] * 2 * upsample_rate
for i in range(0, len(pred_semantic_list))
]
audio_frag_end_idx = [sum(audio_frag_idx[: i + 1]) for i in range(0, len(audio_frag_idx))]
all_pred_semantic = (
torch.cat(pred_semantic_list).unsqueeze(0).unsqueeze(0).to(self.configs.device)
)
_batch_phones = torch.cat(batch_phones).unsqueeze(0).to(self.configs.device)
if self.is_v2pro != True:
_batch_audio_fragment = self.vits_model.decode(
all_pred_semantic, _batch_phones, refer_audio_spec, speed=speed_factor
).detach()[0, 0, :]
else:
_batch_audio_fragment = self.vits_model.decode(
all_pred_semantic, _batch_phones, refer_audio_spec, speed=speed_factor, sv_emb=sv_emb
).detach()[0, 0, :]
audio_frag_end_idx.insert(0, 0)
batch_audio_fragment = [
_batch_audio_fragment[audio_frag_end_idx[i - 1] : audio_frag_end_idx[i]]
for i in range(1, len(audio_frag_end_idx))
]
else:
# ## vits串行推理
for i, idx in enumerate(tqdm(idx_list)):
phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
_pred_semantic = (
pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)
) # .unsqueeze(0)#mq要多unsqueeze一次
if self.is_v2pro != True:
audio_fragment = self.vits_model.decode(
_pred_semantic, phones, refer_audio_spec, speed=speed_factor
).detach()[0, 0, :]
else:
audio_fragment = self.vits_model.decode(
_pred_semantic, phones, refer_audio_spec, speed=speed_factor, sv_emb=sv_emb
).detach()[0, 0, :]
batch_audio_fragment.append(audio_fragment) ###试试重建不带上prompt部分
else:
if parallel_infer:
print(f"{i18n('并行合成中')}...")
audio_fragments = self.using_vocoder_synthesis_batched_infer(
idx_list, pred_semantic_list, batch_phones, speed=speed_factor, sample_steps=sample_steps
)
batch_audio_fragment.extend(audio_fragments)
else:
for i, idx in enumerate(tqdm(idx_list)):
phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
_pred_semantic = (
pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)
) # .unsqueeze(0)#mq要多unsqueeze一次
audio_fragment = self.using_vocoder_synthesis(
_pred_semantic, phones, speed=speed_factor, sample_steps=sample_steps
)
batch_audio_fragment.append(audio_fragment)
t5 = time.perf_counter()
t_45 += t5 - t4
if return_fragment:
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
yield self.audio_postprocess(
[batch_audio_fragment],
output_sr,
None,
speed_factor,
False,
fragment_interval,
super_sampling if self.configs.use_vocoder and self.configs.version == "v3" else False,
)
else:
audio.append(batch_audio_fragment)
if self.stop_flag:
yield 16000, np.zeros(int(16000), dtype=np.int16)
return
if not return_fragment:
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t_34, t_45))
if len(audio) == 0:
yield 16000, np.zeros(int(16000), dtype=np.int16)
return
yield self.audio_postprocess(
audio,
output_sr,
batch_index_list,
speed_factor,
split_bucket,
fragment_interval,
super_sampling if self.configs.use_vocoder and self.configs.version == "v3" else False,
)
except Exception as e:
traceback.print_exc()
# 必须返回一个空音频, 否则会导致显存不释放。
yield 16000, np.zeros(int(16000), dtype=np.int16)
# 重置模型, 否则会导致显存释放不完全。
del self.t2s_model
del self.vits_model
self.t2s_model = None
self.vits_model = None
self.init_t2s_weights(self.configs.t2s_weights_path)
self.init_vits_weights(self.configs.vits_weights_path)
raise e
finally:
self.empty_cache()
def empty_cache(self):
try:
gc.collect() # 触发gc的垃圾回收。避免内存一直增长。
if "cuda" in str(self.configs.device):
torch.cuda.empty_cache()
elif str(self.configs.device) == "mps":
torch.mps.empty_cache()
except:
pass
def audio_postprocess(
self,
audio: List[torch.Tensor],
sr: int,
batch_index_list: list = None,
speed_factor: float = 1.0,
split_bucket: bool = True,
fragment_interval: float = 0.3,
super_sampling: bool = False,
) -> Tuple[int, np.ndarray]:
zero_wav = torch.zeros(
int(self.configs.sampling_rate * fragment_interval), dtype=self.precision, device=self.configs.device
)
for i, batch in enumerate(audio):
for j, audio_fragment in enumerate(batch):
max_audio = torch.abs(audio_fragment).max() # 简单防止16bit爆音
if max_audio > 1:
audio_fragment /= max_audio
audio_fragment: torch.Tensor = torch.cat([audio_fragment, zero_wav], dim=0)
audio[i][j] = audio_fragment
if split_bucket:
audio = self.recovery_order(audio, batch_index_list)
else:
# audio = [item for batch in audio for item in batch]
audio = sum(audio, [])
audio = torch.cat(audio, dim=0)
if super_sampling:
print(f"############ {i18n('音频超采样')} ############")
t1 = time.perf_counter()
self.init_sr_model()
if not self.sr_model_not_exist:
audio, sr = self.sr_model(audio.unsqueeze(0), sr)
max_audio = np.abs(audio).max()
if max_audio > 1:
audio /= max_audio
t2 = time.perf_counter()
print(f"超采样用时:{t2 - t1:.3f}s")
else:
audio = audio.cpu().numpy()
audio = (audio * 32768).astype(np.int16)
# try:
# if speed_factor != 1.0:
# audio = speed_change(audio, speed=speed_factor, sr=int(sr))
# except Exception as e:
# print(f"Failed to change speed of audio: \n{e}")
return sr, audio
def using_vocoder_synthesis(
self, semantic_tokens: torch.Tensor, phones: torch.Tensor, speed: float = 1.0, sample_steps: int = 32
):
prompt_semantic_tokens = self.prompt_cache["prompt_semantic"].unsqueeze(0).unsqueeze(0).to(self.configs.device)
prompt_phones = torch.LongTensor(self.prompt_cache["phones"]).unsqueeze(0).to(self.configs.device)
raw_entry = self.prompt_cache["refer_spec"][0]
if isinstance(raw_entry, tuple):
raw_entry = raw_entry[0]
refer_audio_spec = raw_entry.to(dtype=self.precision, device=self.configs.device)
fea_ref, ge = self.vits_model.decode_encp(prompt_semantic_tokens, prompt_phones, refer_audio_spec)
ref_audio: torch.Tensor = self.prompt_cache["raw_audio"]
ref_sr = self.prompt_cache["raw_sr"]
ref_audio = ref_audio.to(self.configs.device).float()
if ref_audio.shape[0] == 2:
ref_audio = ref_audio.mean(0).unsqueeze(0)
# tgt_sr = self.vocoder_configs["sr"]
tgt_sr = 24000 if self.configs.version == "v3" else 32000
if ref_sr != tgt_sr:
ref_audio = resample(ref_audio, ref_sr, tgt_sr, self.configs.device)
mel2 = mel_fn(ref_audio) if self.configs.version == "v3" else mel_fn_v4(ref_audio)
mel2 = norm_spec(mel2)
T_min = min(mel2.shape[2], fea_ref.shape[2])
mel2 = mel2[:, :, :T_min]
fea_ref = fea_ref[:, :, :T_min]
T_ref = self.vocoder_configs["T_ref"]
T_chunk = self.vocoder_configs["T_chunk"]
if T_min > T_ref:
mel2 = mel2[:, :, -T_ref:]
fea_ref = fea_ref[:, :, -T_ref:]
T_min = T_ref
chunk_len = T_chunk - T_min
mel2 = mel2.to(self.precision)
fea_todo, ge = self.vits_model.decode_encp(semantic_tokens, phones, refer_audio_spec, ge, speed)
cfm_resss = []
idx = 0
while 1:
fea_todo_chunk = fea_todo[:, :, idx : idx + chunk_len]
if fea_todo_chunk.shape[-1] == 0:
break
idx += chunk_len
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
cfm_res = self.vits_model.cfm.inference(
fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0
)
cfm_res = cfm_res[:, :, mel2.shape[2] :]
mel2 = cfm_res[:, :, -T_min:]
fea_ref = fea_todo_chunk[:, :, -T_min:]
cfm_resss.append(cfm_res)
cfm_res = torch.cat(cfm_resss, 2)
cfm_res = denorm_spec(cfm_res)
with torch.inference_mode():
wav_gen = self.vocoder(cfm_res)
audio = wav_gen[0][0] # .cpu().detach().numpy()
return audio
def using_vocoder_synthesis_batched_infer(
self,
idx_list: List[int],
semantic_tokens_list: List[torch.Tensor],
batch_phones: List[torch.Tensor],
speed: float = 1.0,
sample_steps: int = 32,
) -> List[torch.Tensor]:
prompt_semantic_tokens = self.prompt_cache["prompt_semantic"].unsqueeze(0).unsqueeze(0).to(self.configs.device)
prompt_phones = torch.LongTensor(self.prompt_cache["phones"]).unsqueeze(0).to(self.configs.device)
raw_entry = self.prompt_cache["refer_spec"][0]
if isinstance(raw_entry, tuple):
raw_entry = raw_entry[0]
refer_audio_spec = raw_entry.to(dtype=self.precision, device=self.configs.device)
fea_ref, ge = self.vits_model.decode_encp(prompt_semantic_tokens, prompt_phones, refer_audio_spec)
ref_audio: torch.Tensor = self.prompt_cache["raw_audio"]
ref_sr = self.prompt_cache["raw_sr"]
ref_audio = ref_audio.to(self.configs.device).float()
if ref_audio.shape[0] == 2:
ref_audio = ref_audio.mean(0).unsqueeze(0)
# tgt_sr = self.vocoder_configs["sr"]
tgt_sr = 24000 if self.configs.version == "v3" else 32000
if ref_sr != tgt_sr:
ref_audio = resample(ref_audio, ref_sr, tgt_sr, self.configs.device)
mel2 = mel_fn(ref_audio) if self.configs.version == "v3" else mel_fn_v4(ref_audio)
mel2 = norm_spec(mel2)
T_min = min(mel2.shape[2], fea_ref.shape[2])
mel2 = mel2[:, :, :T_min]
fea_ref = fea_ref[:, :, :T_min]
T_ref = self.vocoder_configs["T_ref"]
T_chunk = self.vocoder_configs["T_chunk"]
if T_min > T_ref:
mel2 = mel2[:, :, -T_ref:]
fea_ref = fea_ref[:, :, -T_ref:]
T_min = T_ref
chunk_len = T_chunk - T_min
mel2 = mel2.to(self.precision)
# #### batched inference
overlapped_len = self.vocoder_configs["overlapped_len"]
feat_chunks = []
feat_lens = []
feat_list = []
for i, idx in enumerate(idx_list):
phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
semantic_tokens = (
semantic_tokens_list[i][-idx:].unsqueeze(0).unsqueeze(0)
) # .unsqueeze(0)#mq要多unsqueeze一次
feat, _ = self.vits_model.decode_encp(semantic_tokens, phones, refer_audio_spec, ge, speed)
feat_list.append(feat)
feat_lens.append(feat.shape[2])
feats = torch.cat(feat_list, 2)
feats_padded = F.pad(feats, (overlapped_len, 0), "constant", 0)
pos = 0
padding_len = 0
while True:
if pos == 0:
chunk = feats_padded[:, :, pos : pos + chunk_len]
else:
pos = pos - overlapped_len
chunk = feats_padded[:, :, pos : pos + chunk_len]
pos += chunk_len
if chunk.shape[-1] == 0:
break
# padding for the last chunk
padding_len = chunk_len - chunk.shape[2]
if padding_len != 0:
chunk = F.pad(chunk, (0, padding_len), "constant", 0)
feat_chunks.append(chunk)
feat_chunks = torch.cat(feat_chunks, 0)
bs = feat_chunks.shape[0]
fea_ref = fea_ref.repeat(bs, 1, 1)
fea = torch.cat([fea_ref, feat_chunks], 2).transpose(2, 1)
pred_spec = self.vits_model.cfm.inference(
fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0
)
pred_spec = pred_spec[:, :, -chunk_len:]
dd = pred_spec.shape[1]
pred_spec = pred_spec.permute(1, 0, 2).contiguous().view(dd, -1).unsqueeze(0)
# pred_spec = pred_spec[..., :-padding_len]
pred_spec = denorm_spec(pred_spec)
with torch.no_grad():
wav_gen = self.vocoder(pred_spec)
audio = wav_gen[0][0] # .cpu().detach().numpy()
audio_fragments = []
upsample_rate = self.vocoder_configs["upsample_rate"]
pos = 0
while pos < audio.shape[-1]:
audio_fragment = audio[pos : pos + chunk_len * upsample_rate]
audio_fragments.append(audio_fragment)
pos += chunk_len * upsample_rate
audio = self.sola_algorithm(audio_fragments, overlapped_len * upsample_rate)
audio = audio[overlapped_len * upsample_rate : -padding_len * upsample_rate]
audio_fragments = []
for feat_len in feat_lens:
audio_fragment = audio[: feat_len * upsample_rate]
audio_fragments.append(audio_fragment)
audio = audio[feat_len * upsample_rate :]
return audio_fragments
def sola_algorithm(
self,
audio_fragments: List[torch.Tensor],
overlap_len: int,
):
for i in range(len(audio_fragments) - 1):
f1 = audio_fragments[i]
f2 = audio_fragments[i + 1]
w1 = f1[-overlap_len:]
w2 = f2[:overlap_len]
assert w1.shape == w2.shape
corr = F.conv1d(w1.view(1, 1, -1), w2.view(1, 1, -1), padding=w2.shape[-1] // 2).view(-1)[:-1]
idx = corr.argmax()
f1_ = f1[: -(overlap_len - idx)]
audio_fragments[i] = f1_
f2_ = f2[idx:]
window = torch.hann_window((overlap_len - idx) * 2, device=f1.device, dtype=f1.dtype)
f2_[: (overlap_len - idx)] = (
window[: (overlap_len - idx)] * f2_[: (overlap_len - idx)]
+ window[(overlap_len - idx) :] * f1[-(overlap_len - idx) :]
)
audio_fragments[i + 1] = f2_
return torch.cat(audio_fragments, 0)