kemuriririn commited on
Commit
622b6ed
·
1 Parent(s): 2cb0f8a
TTS_infer_pack/TTS.py CHANGED
@@ -149,45 +149,45 @@ class NO_PROMPT_ERROR(Exception):
149
  # configs/tts_infer.yaml
150
  """
151
  custom:
152
- bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
153
- cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
154
  device: cpu
155
  is_half: false
156
- t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
157
- vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
158
  version: v2
159
  v1:
160
- bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
161
- cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
162
  device: cpu
163
  is_half: false
164
- t2s_weights_path: GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
165
- vits_weights_path: GPT_SoVITS/pretrained_models/s2G488k.pth
166
  version: v1
167
  v2:
168
- bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
169
- cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
170
  device: cpu
171
  is_half: false
172
- t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
173
- vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
174
  version: v2
175
  v3:
176
- bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
177
- cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
178
  device: cpu
179
  is_half: false
180
- t2s_weights_path: GPT_SoVITS/pretrained_models/s1v3.ckpt
181
- vits_weights_path: GPT_SoVITS/pretrained_models/s2Gv3.pth
182
  version: v3
183
  v4:
184
- bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
185
- cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
186
  device: cpu
187
  is_half: false
188
- t2s_weights_path: GPT_SoVITS/pretrained_models/s1v3.ckpt
189
  version: v4
190
- vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth
191
  """
192
 
193
 
@@ -220,55 +220,55 @@ class TTS_Config:
220
  "device": "cpu",
221
  "is_half": False,
222
  "version": "v1",
223
- "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
224
- "vits_weights_path": "GPT_SoVITS/pretrained_models/s2G488k.pth",
225
- "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
226
- "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
227
  },
228
  "v2": {
229
  "device": "cpu",
230
  "is_half": False,
231
  "version": "v2",
232
- "t2s_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
233
- "vits_weights_path": "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
234
- "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
235
- "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
236
  },
237
  "v3": {
238
  "device": "cpu",
239
  "is_half": False,
240
  "version": "v3",
241
- "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1v3.ckpt",
242
- "vits_weights_path": "GPT_SoVITS/pretrained_models/s2Gv3.pth",
243
- "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
244
- "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
245
  },
246
  "v4": {
247
  "device": "cpu",
248
  "is_half": False,
249
  "version": "v4",
250
- "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1v3.ckpt",
251
- "vits_weights_path": "GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
252
- "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
253
- "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
254
  },
255
  "v2Pro": {
256
  "device": "cpu",
257
  "is_half": False,
258
  "version": "v2Pro",
259
- "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1v3.ckpt",
260
- "vits_weights_path": "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth",
261
- "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
262
- "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
263
  },
264
  "v2ProPlus": {
265
  "device": "cpu",
266
  "is_half": False,
267
  "version": "v2ProPlus",
268
- "t2s_weights_path": "GPT_SoVITS/pretrained_models/s1v3.ckpt",
269
- "vits_weights_path": "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth",
270
- "cnhuhbert_base_path": "GPT_SoVITS/pretrained_models/chinese-hubert-base",
271
- "bert_base_path": "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
272
  },
273
  }
274
  configs: dict = None
@@ -289,7 +289,7 @@ class TTS_Config:
289
 
290
  def __init__(self, configs: Union[dict, str] = None):
291
  # 设置默认配置文件路径
292
- configs_base_path: str = "GPT_SoVITS/configs/"
293
  os.makedirs(configs_base_path, exist_ok=True)
294
  self.configs_path: str = os.path.join(configs_base_path, "tts_infer.yaml")
295
 
@@ -602,7 +602,7 @@ class TTS:
602
  self.empty_cache()
603
 
604
  self.vocoder = BigVGAN.from_pretrained(
605
- "%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
606
  use_cuda_kernel=False,
607
  ) # if True, RuntimeError: Ninja is required to load C++ extensions
608
  # remove weight norm in the model and set to eval mode
@@ -635,7 +635,7 @@ class TTS:
635
  )
636
  self.vocoder.remove_weight_norm()
637
  state_dict_g = torch.load(
638
- "%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,),
639
  map_location="cpu",
640
  weights_only=False,
641
  )
 
149
  # configs/tts_infer.yaml
150
  """
151
  custom:
152
+ bert_base_path: pretrained_models/chinese-roberta-wwm-ext-large
153
+ cnhuhbert_base_path: pretrained_models/chinese-hubert-base
154
  device: cpu
155
  is_half: false
156
+ t2s_weights_path: pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
157
+ vits_weights_path: pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
158
  version: v2
159
  v1:
160
+ bert_base_path: pretrained_models/chinese-roberta-wwm-ext-large
161
+ cnhuhbert_base_path: pretrained_models/chinese-hubert-base
162
  device: cpu
163
  is_half: false
164
+ t2s_weights_path: pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
165
+ vits_weights_path: pretrained_models/s2G488k.pth
166
  version: v1
167
  v2:
168
+ bert_base_path: pretrained_models/chinese-roberta-wwm-ext-large
169
+ cnhuhbert_base_path: pretrained_models/chinese-hubert-base
170
  device: cpu
171
  is_half: false
172
+ t2s_weights_path: pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
173
+ vits_weights_path: pretrained_models/gsv-v2final-pretrained/s2G2333k.pth
174
  version: v2
175
  v3:
176
+ bert_base_path: pretrained_models/chinese-roberta-wwm-ext-large
177
+ cnhuhbert_base_path: pretrained_models/chinese-hubert-base
178
  device: cpu
179
  is_half: false
180
+ t2s_weights_path: pretrained_models/s1v3.ckpt
181
+ vits_weights_path: pretrained_models/s2Gv3.pth
182
  version: v3
183
  v4:
184
+ bert_base_path: pretrained_models/chinese-roberta-wwm-ext-large
185
+ cnhuhbert_base_path: pretrained_models/chinese-hubert-base
186
  device: cpu
187
  is_half: false
188
+ t2s_weights_path: pretrained_models/s1v3.ckpt
189
  version: v4
190
+ vits_weights_path: pretrained_models/gsv-v4-pretrained/s2Gv4.pth
191
  """
192
 
193
 
 
220
  "device": "cpu",
221
  "is_half": False,
222
  "version": "v1",
223
+ "t2s_weights_path": "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
224
+ "vits_weights_path": "pretrained_models/s2G488k.pth",
225
+ "cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
226
+ "bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
227
  },
228
  "v2": {
229
  "device": "cpu",
230
  "is_half": False,
231
  "version": "v2",
232
+ "t2s_weights_path": "pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
233
+ "vits_weights_path": "pretrained_models/gsv-v2final-pretrained/s2G2333k.pth",
234
+ "cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
235
+ "bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
236
  },
237
  "v3": {
238
  "device": "cpu",
239
  "is_half": False,
240
  "version": "v3",
241
+ "t2s_weights_path": "pretrained_models/s1v3.ckpt",
242
+ "vits_weights_path": "pretrained_models/s2Gv3.pth",
243
+ "cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
244
+ "bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
245
  },
246
  "v4": {
247
  "device": "cpu",
248
  "is_half": False,
249
  "version": "v4",
250
+ "t2s_weights_path": "pretrained_models/s1v3.ckpt",
251
+ "vits_weights_path": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
252
+ "cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
253
+ "bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
254
  },
255
  "v2Pro": {
256
  "device": "cpu",
257
  "is_half": False,
258
  "version": "v2Pro",
259
+ "t2s_weights_path": "pretrained_models/s1v3.ckpt",
260
+ "vits_weights_path": "pretrained_models/v2Pro/s2Gv2Pro.pth",
261
+ "cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
262
+ "bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
263
  },
264
  "v2ProPlus": {
265
  "device": "cpu",
266
  "is_half": False,
267
  "version": "v2ProPlus",
268
+ "t2s_weights_path": "pretrained_models/s1v3.ckpt",
269
+ "vits_weights_path": "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
270
+ "cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
271
+ "bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
272
  },
273
  }
274
  configs: dict = None
 
289
 
290
  def __init__(self, configs: Union[dict, str] = None):
291
  # 设置默认配置文件路径
292
+ configs_base_path: str = "configs/"
293
  os.makedirs(configs_base_path, exist_ok=True)
294
  self.configs_path: str = os.path.join(configs_base_path, "tts_infer.yaml")
295
 
 
602
  self.empty_cache()
603
 
604
  self.vocoder = BigVGAN.from_pretrained(
605
+ "%s/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
606
  use_cuda_kernel=False,
607
  ) # if True, RuntimeError: Ninja is required to load C++ extensions
608
  # remove weight norm in the model and set to eval mode
 
635
  )
636
  self.vocoder.remove_weight_norm()
637
  state_dict_g = torch.load(
638
+ "%s/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,),
639
  map_location="cpu",
640
  weights_only=False,
641
  )
TTS_infer_pack/text_segmentation_method.py CHANGED
@@ -158,7 +158,7 @@ def cut4(inp):
158
 
159
 
160
  # 按标点符号切
161
- # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
162
  @register_method("cut5")
163
  def cut5(inp):
164
  inp = inp.strip("\n")
 
158
 
159
 
160
  # 按标点符号切
161
+ # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/inference_webui.py
162
  @register_method("cut5")
163
  def cut5(inp):
164
  inp = inp.strip("\n")
download.py CHANGED
@@ -6,8 +6,8 @@ sys.path.insert(0, now_dir)
6
  from text.g2pw import G2PWPinyin
7
 
8
  g2pw = G2PWPinyin(
9
- model_dir="GPT_SoVITS/text/G2PWModel",
10
- model_source="GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large",
11
  v_to_u=False,
12
  neutral_tone_with_five=True,
13
  )
 
6
  from text.g2pw import G2PWPinyin
7
 
8
  g2pw = G2PWPinyin(
9
+ model_dir="text/G2PWModel",
10
+ model_source="pretrained_models/chinese-roberta-wwm-ext-large",
11
  v_to_u=False,
12
  neutral_tone_with_five=True,
13
  )
export_torch_script.py CHANGED
@@ -561,8 +561,8 @@ class T2SModel(nn.Module):
561
  return y[:, -idx:].unsqueeze(0)
562
 
563
 
564
- bert_path = os.environ.get("bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large")
565
- cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
566
  cnhubert.cnhubert_base_path = cnhubert_base_path
567
 
568
 
 
561
  return y[:, -idx:].unsqueeze(0)
562
 
563
 
564
+ bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large")
565
+ cnhubert_base_path = "pretrained_models/chinese-hubert-base"
566
  cnhubert.cnhubert_base_path = cnhubert_base_path
567
 
568
 
export_torch_script_v3v4.py CHANGED
@@ -505,7 +505,7 @@ def init_bigvgan():
505
  from BigVGAN import bigvgan
506
 
507
  bigvgan_model = bigvgan.BigVGAN.from_pretrained(
508
- "%s/GPT_SoVITS/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
509
  use_cuda_kernel=False,
510
  ) # if True, RuntimeError: Ninja is required to load C++ extensions
511
  # remove weight norm in the model and set to eval mode
@@ -533,7 +533,7 @@ def init_hifigan():
533
  hifigan_model.eval()
534
  hifigan_model.remove_weight_norm()
535
  state_dict_g = torch.load(
536
- "%s/GPT_SoVITS/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,), map_location="cpu"
537
  )
538
  print("loading vocoder", hifigan_model.load_state_dict(state_dict_g))
539
  if is_half == True:
@@ -584,7 +584,7 @@ v3v4set = {"v3", "v4"}
584
 
585
 
586
  def get_sovits_weights(sovits_path):
587
- path_sovits_v3 = "GPT_SoVITS/pretrained_models/s2Gv3.pth"
588
  is_exist_s2gv3 = os.path.exists(path_sovits_v3)
589
 
590
  version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
@@ -707,13 +707,13 @@ def export_cfm(
707
 
708
  def export_1(ref_wav_path, ref_wav_text, version="v3"):
709
  if version == "v3":
710
- sovits = get_sovits_weights("GPT_SoVITS/pretrained_models/s2Gv3.pth")
711
  init_bigvgan()
712
  else:
713
- sovits = get_sovits_weights("GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth")
714
  init_hifigan()
715
 
716
- dict_s1 = torch.load("GPT_SoVITS/pretrained_models/s1v3.ckpt")
717
  raw_t2s = get_raw_t2s_model(dict_s1).to(device)
718
  print("#### get_raw_t2s_model ####")
719
  print(raw_t2s.config)
@@ -1124,10 +1124,10 @@ import time
1124
 
1125
  def export_2(version="v3"):
1126
  if version == "v3":
1127
- sovits = get_sovits_weights("GPT_SoVITS/pretrained_models/s2Gv3.pth")
1128
  # init_bigvgan()
1129
  else:
1130
- sovits = get_sovits_weights("GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth")
1131
  # init_hifigan()
1132
 
1133
  # cfm = ExportCFM(sovits.cfm)
@@ -1142,9 +1142,9 @@ def export_2(version="v3"):
1142
 
1143
  logger.info("cfm ok")
1144
 
1145
- dict_s1 = torch.load("GPT_SoVITS/pretrained_models/s1v3.ckpt")
1146
  # v2 的 gpt 也可以用
1147
- # dict_s1 = torch.load("GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt")
1148
  raw_t2s = get_raw_t2s_model(dict_s1).to(device)
1149
  print("#### get_raw_t2s_model ####")
1150
  print(raw_t2s.config)
 
505
  from BigVGAN import bigvgan
506
 
507
  bigvgan_model = bigvgan.BigVGAN.from_pretrained(
508
+ "%s/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
509
  use_cuda_kernel=False,
510
  ) # if True, RuntimeError: Ninja is required to load C++ extensions
511
  # remove weight norm in the model and set to eval mode
 
533
  hifigan_model.eval()
534
  hifigan_model.remove_weight_norm()
535
  state_dict_g = torch.load(
536
+ "%s/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,), map_location="cpu"
537
  )
538
  print("loading vocoder", hifigan_model.load_state_dict(state_dict_g))
539
  if is_half == True:
 
584
 
585
 
586
  def get_sovits_weights(sovits_path):
587
+ path_sovits_v3 = "pretrained_models/s2Gv3.pth"
588
  is_exist_s2gv3 = os.path.exists(path_sovits_v3)
589
 
590
  version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
 
707
 
708
  def export_1(ref_wav_path, ref_wav_text, version="v3"):
709
  if version == "v3":
710
+ sovits = get_sovits_weights("pretrained_models/s2Gv3.pth")
711
  init_bigvgan()
712
  else:
713
+ sovits = get_sovits_weights("pretrained_models/gsv-v4-pretrained/s2Gv4.pth")
714
  init_hifigan()
715
 
716
+ dict_s1 = torch.load("pretrained_models/s1v3.ckpt")
717
  raw_t2s = get_raw_t2s_model(dict_s1).to(device)
718
  print("#### get_raw_t2s_model ####")
719
  print(raw_t2s.config)
 
1124
 
1125
  def export_2(version="v3"):
1126
  if version == "v3":
1127
+ sovits = get_sovits_weights("pretrained_models/s2Gv3.pth")
1128
  # init_bigvgan()
1129
  else:
1130
+ sovits = get_sovits_weights("pretrained_models/gsv-v4-pretrained/s2Gv4.pth")
1131
  # init_hifigan()
1132
 
1133
  # cfm = ExportCFM(sovits.cfm)
 
1142
 
1143
  logger.info("cfm ok")
1144
 
1145
+ dict_s1 = torch.load("pretrained_models/s1v3.ckpt")
1146
  # v2 的 gpt 也可以用
1147
+ # dict_s1 = torch.load("pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt")
1148
  raw_t2s = get_raw_t2s_model(dict_s1).to(device)
1149
  print("#### get_raw_t2s_model ####")
1150
  print(raw_t2s.config)
inference_webui.py CHANGED
@@ -1063,7 +1063,7 @@ def cut4(inp):
1063
  return "\n".join(opts)
1064
 
1065
 
1066
- # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
1067
  def cut5(inp):
1068
  inp = inp.strip("\n")
1069
  punds = {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}
 
1063
  return "\n".join(opts)
1064
 
1065
 
1066
+ # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/inference_webui.py
1067
  def cut5(inp):
1068
  inp = inp.strip("\n")
1069
  punds = {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}
inference_webui_fast.py CHANGED
@@ -109,7 +109,7 @@ path_sovits_v4 = pretrained_sovits_name["v4"]
109
  is_exist_s2gv3 = os.path.exists(path_sovits_v3)
110
  is_exist_s2gv4 = os.path.exists(path_sovits_v4)
111
 
112
- tts_config = TTS_Config("GPT_SoVITS/configs/tts_infer.yaml")
113
  tts_config.device = device
114
  tts_config.is_half = is_half
115
  tts_config.version = version
 
109
  is_exist_s2gv3 = os.path.exists(path_sovits_v3)
110
  is_exist_s2gv4 = os.path.exists(path_sovits_v4)
111
 
112
+ tts_config = TTS_Config("configs/tts_infer.yaml")
113
  tts_config.device = device
114
  tts_config.is_half = is_half
115
  tts_config.version = version
onnx_export.py CHANGED
@@ -5,7 +5,7 @@ from feature_extractor import cnhubert
5
  from module.models_onnx import SynthesizerTrn, symbols_v1, symbols_v2
6
  from torch import nn
7
 
8
- cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
9
  cnhubert.cnhubert_base_path = cnhubert_base_path
10
  ssl_model = cnhubert.get_model()
11
  import json
 
5
  from module.models_onnx import SynthesizerTrn, symbols_v1, symbols_v2
6
  from torch import nn
7
 
8
+ cnhubert_base_path = "pretrained_models/chinese-hubert-base"
9
  cnhubert.cnhubert_base_path = cnhubert_base_path
10
  ssl_model = cnhubert.get_model()
11
  import json
prepare_datasets/2-get-sv.py CHANGED
@@ -22,7 +22,7 @@ import torchaudio
22
 
23
  now_dir = os.getcwd()
24
  sys.path.append(now_dir)
25
- sys.path.append(f"{now_dir}/GPT_SoVITS/eres2net")
26
  from tools.my_utils import clean_path
27
  from time import time as ttime
28
  import shutil
 
22
 
23
  now_dir = os.getcwd()
24
  sys.path.append(now_dir)
25
+ sys.path.append(f"{now_dir}/eres2net")
26
  from tools.my_utils import clean_path
27
  from time import time as ttime
28
  import shutil
sv.py CHANGED
@@ -2,8 +2,8 @@ import sys
2
  import os
3
  import torch
4
 
5
- sys.path.append(f"{os.getcwd()}/GPT_SoVITS/eres2net")
6
- sv_path = "GPT_SoVITS/pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt"
7
  from ERes2NetV2 import ERes2NetV2
8
  import kaldi as Kaldi
9
 
 
2
  import os
3
  import torch
4
 
5
+ sys.path.append(f"{os.getcwd()}/eres2net")
6
+ sv_path = "pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt"
7
  from ERes2NetV2 import ERes2NetV2
8
  import kaldi as Kaldi
9
 
text/chinese2.py CHANGED
@@ -32,8 +32,8 @@ if is_g2pw:
32
 
33
  parent_directory = os.path.dirname(current_file_path)
34
  g2pw = G2PWPinyin(
35
- model_dir="GPT_SoVITS/text/G2PWModel",
36
- model_source=os.environ.get("bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"),
37
  v_to_u=False,
38
  neutral_tone_with_five=True,
39
  )
 
32
 
33
  parent_directory = os.path.dirname(current_file_path)
34
  g2pw = G2PWPinyin(
35
+ model_dir="text/G2PWModel",
36
+ model_source=os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large"),
37
  v_to_u=False,
38
  neutral_tone_with_five=True,
39
  )