File size: 6,199 Bytes
60ea83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0171e9
60ea83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
ein notation:
b - batch
n - sequence
nt - text sequence
nw - raw wave length
d - dimension
"""

from __future__ import annotations

import torch
from torch import nn
from torch.utils.checkpoint import checkpoint

from x_transformers.x_transformers import RotaryEmbedding

from f5_tts.model.modules import (
    TimestepEmbedding,
    ConvNeXtV2Block,
    ConvPositionEmbedding,
    DiTBlock,
    AdaLayerNormZero_Final,
    precompute_freqs_cis,
    get_pos_embed_indices,
)

from module.commons import sequence_mask


class TextEmbedding(nn.Module):
    def __init__(self, text_dim, conv_layers=0, conv_mult=2):
        super().__init__()
        if conv_layers > 0:
            self.extra_modeling = True
            self.precompute_max_pos = 4096  # ~44s of 24khz audio
            self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
            self.text_blocks = nn.Sequential(
                *[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
            )
        else:
            self.extra_modeling = False

    def forward(self, text: int["b nt"], seq_len, drop_text=False):  # noqa: F722
        batch, text_len = text.shape[0], text.shape[1]

        if drop_text:  # cfg for text
            text = torch.zeros_like(text)

        # possible extra modeling
        if self.extra_modeling:
            # sinus pos emb
            batch_start = torch.zeros((batch,), dtype=torch.long)
            pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
            text_pos_embed = self.freqs_cis[pos_idx]

            # print(23333333,text.shape,text_pos_embed.shape)#torch.Size([7, 465, 256]) torch.Size([7, 465, 256])

            text = text + text_pos_embed

            # convnextv2 blocks
            text = self.text_blocks(text)

        return text


# noised input audio and context mixing embedding


class InputEmbedding(nn.Module):
    def __init__(self, mel_dim, text_dim, out_dim):
        super().__init__()
        self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
        self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)

    def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False):  # noqa: F722
        if drop_audio_cond:  # cfg for cond audio
            cond = torch.zeros_like(cond)

        x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
        x = self.conv_pos_embed(x) + x
        return x


# Transformer backbone using DiT blocks


class DiT(nn.Module):
    def __init__(
        self,
        *,
        dim,
        depth=8,
        heads=8,
        dim_head=64,
        dropout=0.1,
        ff_mult=4,
        mel_dim=100,
        text_dim=None,
        conv_layers=0,
        long_skip_connection=False,
    ):
        super().__init__()

        self.time_embed = TimestepEmbedding(dim)
        self.d_embed = TimestepEmbedding(dim)
        if text_dim is None:
            text_dim = mel_dim
        self.text_embed = TextEmbedding(text_dim, conv_layers=conv_layers)
        self.input_embed = InputEmbedding(mel_dim, text_dim, dim)

        self.rotary_embed = RotaryEmbedding(dim_head)

        self.dim = dim
        self.depth = depth

        self.transformer_blocks = nn.ModuleList(
            [DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)]
        )
        self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None

        self.norm_out = AdaLayerNormZero_Final(dim)  # final modulation
        self.proj_out = nn.Linear(dim, mel_dim)

    def ckpt_wrapper(self, module):
        # https://github.com/chuanyangjin/fast-DiT/blob/main/models.py
        def ckpt_forward(*inputs):
            outputs = module(*inputs)
            return outputs

        return ckpt_forward

    def forward(  # x, prompt_x, x_lens, t, style,cond
        self,  # d is channel,n is T
        x0: float["b n d"],  # nosied input audio  # noqa: F722
        cond0: float["b n d"],  # masked cond audio  # noqa: F722
        x_lens,
        time: float["b"] | float[""],  # time step  # noqa: F821 F722
        dt_base_bootstrap,
        text0,  # : int["b nt"]  # noqa: F722#####condition feature
        use_grad_ckpt=False,  # bool
        ###no-use
        drop_audio_cond=False,  # cfg for cond audio
        drop_text=False,  # cfg for text
        # mask: bool["b n"] | None = None,  # noqa: F722
        infer=False,  # bool
        text_cache=None,  # torch tensor as text_embed
        dt_cache=None,  # torch tensor as dt
    ):
        x = x0.transpose(2, 1)
        cond = cond0.transpose(2, 1)
        text = text0.transpose(2, 1)
        mask = sequence_mask(x_lens, max_length=x.size(1)).to(x.device)

        batch, seq_len = x.shape[0], x.shape[1]
        if time.ndim == 0:
            time = time.repeat(batch)

        # t: conditioning time, c: context (text + masked cond audio), x: noised input audio
        t = self.time_embed(time)
        if infer and dt_cache is not None:
            dt = dt_cache
        else:
            dt = self.d_embed(dt_base_bootstrap)
        t += dt

        if infer and text_cache is not None:
            text_embed = text_cache
        else:
            text_embed = self.text_embed(text, seq_len, drop_text=drop_text)  ###need to change

        x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)

        rope = self.rotary_embed.forward_from_seq_len(seq_len)

        if self.long_skip_connection is not None:
            residual = x

        for block in self.transformer_blocks:
            if use_grad_ckpt:
                x = checkpoint(self.ckpt_wrapper(block), x, t, mask, rope, use_reentrant=False)
            else:
                x = block(x, t, mask=mask, rope=rope)

        if self.long_skip_connection is not None:
            x = self.long_skip_connection(torch.cat((x, residual), dim=-1))

        x = self.norm_out(x, t)
        output = self.proj_out(x)

        if infer:
            return output, text_embed, dt
        else:
            return output