pgnd / src /experiments /train /train_eval.py
kywind
update
f96995c
from pathlib import Path
import random
import time
import os
import matplotlib.pyplot as plt
from collections import defaultdict
from tqdm import tqdm, trange
import hydra
from omegaconf import DictConfig, OmegaConf
import numpy as np
from PIL import Image
import warp as wp
import matplotlib.pyplot as plt
import torch
import torch.backends.cudnn
import torch.nn as nn
from torch.nn.utils import clip_grad_norm_
from torch.utils.data import DataLoader
import kornia
import sys
sys.path.append(str(Path(__file__).parent.parent.parent))
sys.path.append(str(Path(__file__).parent.parent))
from pgnd.sim import Friction, CacheDiffSimWithFrictionBatch, StaticsBatch, CollidersBatch
from pgnd.material import PGNDModel
from pgnd.data import RealTeleopBatchDataset, RealGripperDataset
from pgnd.utils import Logger, get_root, mkdir
from train.pv_train import do_train_pv
from train.pv_dataset import do_dataset_pv
from train.metric_eval import do_metric
root: Path = get_root(__file__)
def dataloader_wrapper(dataloader, name):
cnt = 0
while True:
cnt += 1
for data in dataloader:
yield data
def transform_gripper_points(cfg, gripper_points, gripper):
dx = cfg.sim.num_grids[-1]
gripper_xyz = gripper[:, :, :, :3] # (bsz, num_steps, num_grippers, 3)
gripper_v = gripper[:, :, :, 3:6] # (bsz, num_steps, num_grippers, 3)
gripper_quat = gripper[:, :, :, 6:10] # (bsz, num_steps, num_grippers, 4)
num_steps = gripper_xyz.shape[1]
num_grippers = gripper_xyz.shape[2]
gripper_mat = kornia.geometry.conversions.quaternion_to_rotation_matrix(gripper_quat) # (bsz, num_steps, num_grippers, 3, 3)
gripper_points = gripper_points[:, None, None].repeat(1, num_steps, num_grippers, 1, 1) # (bsz, num_steps, num_grippers, num_points, 3)
gripper_x = gripper_points @ gripper_mat + gripper_xyz[:, :, :, None] # (bsz, num_steps, num_grippers, num_points, 3)
bsz = gripper_x.shape[0]
num_points = gripper_x.shape[3]
gripper_quat_vel = gripper[:, :, :, 10:13] # (bsz, num_steps, num_grippers, 3)
gripper_angular_vel = torch.linalg.norm(gripper_quat_vel, dim=-1, keepdims=True) # (bsz, num_steps, num_grippers, 1)
gripper_quat_axis = gripper_quat_vel / (gripper_angular_vel + 1e-10) # (bsz, num_steps, num_grippers, 3)
gripper_v_expand = gripper_v[:, :, :, None].repeat(1, 1, 1, num_points, 1) # (bsz, num_grippers, num_points, 3)
gripper_points_from_axis = gripper_x - gripper_xyz[:, :, :, None] # (bsz, num_steps, num_grippers, num_points, 3)
grid_from_gripper_axis = gripper_points_from_axis - \
(gripper_quat_axis[:, :, :, None] * gripper_points_from_axis).sum(dim=-1, keepdims=True) * gripper_quat_axis[:, :, :, None] # (bsz, num_steps, num_grippers, num_particles, 3)
gripper_v_expand = torch.cross(gripper_quat_vel[:, :, :, None], grid_from_gripper_axis, dim=-1) + gripper_v_expand
gripper_v = gripper_v_expand.reshape(bsz, num_steps, num_grippers * num_points, 3)
gripper_x = gripper_x.reshape(bsz, num_steps, num_grippers * num_points, 3)
gripper_x_mask = (gripper_x[:, :, :, 0] > dx * (cfg.model.clip_bound + 0.5)) \
& (gripper_x[:, :, :, 0] < 1 - (dx * (cfg.model.clip_bound + 0.5))) \
& (gripper_x[:, :, :, 1] > dx * (cfg.model.clip_bound + 0.5)) \
& (gripper_x[:, :, :, 1] < 1 - (dx * (cfg.model.clip_bound + 0.5))) \
& (gripper_x[:, :, :, 2] > dx * (cfg.model.clip_bound + 0.5)) \
& (gripper_x[:, :, :, 2] < 1 - (dx * (cfg.model.clip_bound + 0.5)))
return gripper_x, gripper_v, gripper_x_mask
class Trainer:
def __init__(self, cfg: DictConfig):
self.cfg = cfg
print(OmegaConf.to_yaml(cfg, resolve=True))
wp.init()
wp.ScopedTimer.enabled = False
wp.set_module_options({'fast_math': False})
wp.config.verify_autograd_array_access = True
gpus = [int(gpu) for gpu in cfg.gpus]
wp_devices = [wp.get_device(f'cuda:{gpu}') for gpu in gpus]
torch_devices = [torch.device(f'cuda:{gpu}') for gpu in gpus]
device_count = len(torch_devices)
assert device_count == 1
self.wp_device = wp_devices[0]
self.torch_device = torch_devices[0]
seed = cfg.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.autograd.set_detect_anomaly(True)
torch.backends.cudnn.benchmark = True
# path
log_root: Path = root / 'log'
exp_root: Path = log_root / cfg.train.name
mkdir(exp_root, overwrite=cfg.overwrite, resume=cfg.resume)
OmegaConf.save(cfg, exp_root / 'hydra.yaml', resolve=True)
ckpt_root: Path = exp_root / 'ckpt'
ckpt_root.mkdir(parents=True, exist_ok=True)
self.log_root = log_root
self.ckpt_root = ckpt_root
self.use_pv = cfg.train.use_pv
self.dataset_non_overwrite = cfg.train.dataset_non_overwrite
if not self.use_pv:
print('not using pv rendering...')
assert self.cfg.train.source_dataset_name is not None
self.use_gs = cfg.train.use_gs
# logging
self.verbose = False
if not cfg.debug:
logger = Logger(cfg, project='pgnd-train')
self.logger = logger
def load_train_dataset(self):
cfg = self.cfg
if cfg.train.dataset_name is None:
cfg.train.dataset_name = Path(cfg.train.name).parent / 'dataset'
source_dataset_root = self.log_root / str(cfg.train.source_dataset_name)
assert os.path.exists(source_dataset_root)
dataset = RealTeleopBatchDataset(
cfg,
dataset_root=self.log_root / cfg.train.dataset_name / 'state',
source_data_root=source_dataset_root,
device=self.torch_device,
num_steps=cfg.sim.num_steps_train,
train=True,
dataset_non_overwrite=self.dataset_non_overwrite,
)
self.dataset = dataset
if cfg.sim.gripper_points:
gripper_dataset = RealGripperDataset(
cfg,
device=self.torch_device,
train=True,
)
self.gripper_dataset = gripper_dataset
def init_train(self):
cfg = self.cfg
dataloader = dataloader_wrapper(
DataLoader(self.dataset, batch_size=cfg.train.batch_size, shuffle=True, num_workers=cfg.train.num_workers, pin_memory=True, drop_last=True),
'dataset'
)
self.dataloader = dataloader
if cfg.sim.gripper_points:
gripper_dataloader = dataloader_wrapper(
DataLoader(self.gripper_dataset, batch_size=cfg.train.batch_size, shuffle=True, num_workers=cfg.train.num_workers, pin_memory=True, drop_last=True),
'gripper_dataset'
)
self.gripper_dataloader = gripper_dataloader
# material model
material_requires_grad = cfg.model.material.requires_grad
material: nn.Module = PGNDModel(cfg)
material.to(self.torch_device)
material.requires_grad_(material_requires_grad)
material.train(True)
# friction
friction: nn.Module = Friction(np.array([cfg.model.friction.value]))
friction.to(self.torch_device)
friction.requires_grad_(False)
friction.train(False)
if cfg.resume and cfg.train.resume_iteration > 0:
assert (self.ckpt_root / f'{cfg.train.resume_iteration:06d}.pt').exists()
ckpt = torch.load(self.ckpt_root / f'{cfg.train.resume_iteration:06d}.pt', map_location=self.torch_device)
material.load_state_dict(ckpt['material'])
elif cfg.model.ckpt:
ckpt = torch.load(self.log_root / cfg.model.ckpt, map_location=self.torch_device)
material.load_state_dict(ckpt['material'])
if not (cfg.resume and cfg.train.resume_iteration > 0):
torch.save({
'material': material.state_dict(),
}, self.ckpt_root / f'{cfg.train.resume_iteration:06d}.pt')
if material_requires_grad:
material_optimizer = torch.optim.Adam(material.parameters(), lr=cfg.train.material_lr, weight_decay=cfg.train.material_wd)
material_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer=material_optimizer, T_max=cfg.train.num_iterations)
if cfg.train.resume_iteration > 0:
material_lr_scheduler.last_epoch = cfg.train.resume_iteration - 1
material_lr_scheduler.step()
criterion = nn.MSELoss(reduction='mean')
criterion.to(self.torch_device)
total_step_count = 0
if cfg.resume and cfg.train.resume_iteration > 0:
total_step_count = cfg.train.resume_iteration * cfg.sim.num_steps_train
losses_log = defaultdict(int)
loss_factor_v = cfg.train.loss_factor_v
loss_factor_x = cfg.train.loss_factor_x
self.loss_factor_v = loss_factor_v
self.loss_factor_x = loss_factor_x
self.material_requires_grad = material_requires_grad
self.material = material
self.material_optimizer = material_optimizer
self.material_lr_scheduler = material_lr_scheduler
self.criterion = criterion
self.total_step_count = total_step_count
self.losses_log = losses_log
self.friction = friction
def train(self, start_iteration, end_iteration, save=True):
cfg = self.cfg
self.material.train(True)
for iteration in trange(start_iteration, end_iteration, dynamic_ncols=True):
if self.material_requires_grad:
self.material_optimizer.zero_grad()
losses = defaultdict(int)
init_state, actions, gt_states = next(self.dataloader)
x, v, x_his, v_his, clip_bound, enabled, episode_vec = init_state
x = x.to(self.torch_device)
v = v.to(self.torch_device)
x_his = x_his.to(self.torch_device)
v_his = v_his.to(self.torch_device)
actions = actions.to(self.torch_device)
if cfg.sim.gripper_points:
gripper_points, _ = next(self.gripper_dataloader)
gripper_points = gripper_points.to(self.torch_device)
gripper_x, gripper_v, gripper_mask = transform_gripper_points(cfg, gripper_points, actions) # (bsz, num_steps, num_grippers, 3)
gt_x, gt_v = gt_states
gt_x = gt_x.to(self.torch_device)
gt_v = gt_v.to(self.torch_device)
# gt_x: (bsz, num_steps_total)
batch_size = gt_x.shape[0]
num_steps_total = gt_x.shape[1]
num_particles = gt_x.shape[2]
if cfg.sim.gripper_points:
num_gripper_particles = gripper_x.shape[2]
num_particles_orig = num_particles
num_particles = num_particles + num_gripper_particles
sim = CacheDiffSimWithFrictionBatch(cfg, num_steps_total, batch_size, self.wp_device, requires_grad=True)
statics = StaticsBatch()
statics.init(shape=(batch_size, num_particles), device=self.wp_device)
statics.update_clip_bound(clip_bound)
statics.update_enabled(enabled)
colliders = CollidersBatch()
if cfg.sim.gripper_points:
assert not cfg.sim.gripper_forcing
num_grippers = 0
else:
num_grippers = cfg.sim.num_grippers
colliders.init(shape=(batch_size, num_grippers), device=self.wp_device)
if num_grippers > 0:
assert len(actions.shape) > 2
colliders.initialize_grippers(actions[:, 0])
enabled = enabled.to(self.torch_device) # (bsz, num_particles)
enabled_mask = enabled.unsqueeze(-1).repeat(1, 1, 3) # (bsz, num_particles, 3)
for step in range(num_steps_total):
if num_grippers > 0:
colliders.update_grippers(actions[:, step])
x_in = x.clone()
if step == 0:
x_in_gt = x.clone()
v_in_gt = v.clone()
else:
x_in_gt = x_in_gt + v_in_gt * cfg.sim.dt * cfg.sim.interval
if cfg.sim.gripper_points:
x = torch.cat([x, gripper_x[:, step]], dim=1) # gripper_x: (bsz, num_steps, num_particles, 3)
v = torch.cat([v, gripper_v[:, step]], dim=1)
x_his = torch.cat([x_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=x_his.device, dtype=x_his.dtype)], dim=1)
v_his = torch.cat([v_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=v_his.device, dtype=v_his.dtype)], dim=1)
if enabled.shape[1] < num_particles:
enabled = torch.cat([enabled, gripper_mask[:, step]], dim=1)
statics.update_enabled(enabled.cpu())
pred = self.material(x, v, x_his, v_his, enabled)
x, v = sim(statics, colliders, step, x, v, self.friction.mu.clone()[None].repeat(batch_size, 1), pred)
if cfg.sim.gripper_forcing:
assert not cfg.sim.gripper_points
gripper_xyz = actions[:, step, :, :3] # (bsz, num_grippers, 3)
gripper_v = actions[:, step, :, 3:6] # (bsz, num_grippers, 3)
x_from_gripper = x_in[:, None] - gripper_xyz[:, :, None] # (bsz, num_grippers, num_particles, 3)
x_gripper_distance = torch.norm(x_from_gripper, dim=-1) # (bsz, num_grippers, num_particles)
x_gripper_distance_mask = x_gripper_distance < cfg.model.gripper_radius
x_gripper_distance_mask = x_gripper_distance_mask.unsqueeze(-1).repeat(1, 1, 1, 3) # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = gripper_v[:, :, None].repeat(1, 1, num_particles, 1) # (bsz, num_grippers, num_particles, 3)
gripper_closed = actions[:, step, :, -1] < 0.5 # (bsz, num_grippers) # 1: open, 0: close
x_gripper_distance_mask = torch.logical_and(x_gripper_distance_mask, gripper_closed[:, :, None, None].repeat(1, 1, num_particles, 3))
gripper_quat_vel = actions[:, step, :, 10:13] # (bsz, num_grippers, 3)
gripper_angular_vel = torch.linalg.norm(gripper_quat_vel, dim=-1, keepdims=True) # (bsz, num_grippers, 1)
gripper_quat_axis = gripper_quat_vel / (gripper_angular_vel + 1e-10) # (bsz, num_grippers, 3)
grid_from_gripper_axis = x_from_gripper - \
(gripper_quat_axis[:, :, None] * x_from_gripper).sum(dim=-1, keepdims=True) * gripper_quat_axis[:, :, None] # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = torch.cross(gripper_quat_vel[:, :, None], grid_from_gripper_axis, dim=-1) + gripper_v_expand
for i in range(gripper_xyz.shape[1]):
x_gripper_distance_mask_single = x_gripper_distance_mask[:, i]
x[x_gripper_distance_mask_single] = x_in[x_gripper_distance_mask_single] + cfg.sim.dt * gripper_v_expand[:, i][x_gripper_distance_mask_single]
v[x_gripper_distance_mask_single] = gripper_v_expand[:, i][x_gripper_distance_mask_single]
if cfg.sim.n_history > 0:
if cfg.sim.gripper_points:
x_his_particles = torch.cat([x_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], x[:, :num_particles_orig, None].detach()], dim=2)
v_his_particles = torch.cat([v_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], v[:, :num_particles_orig, None].detach()], dim=2)
x_his = x_his_particles.reshape(batch_size, num_particles_orig, -1)
v_his = v_his_particles.reshape(batch_size, num_particles_orig, -1)
else:
x_his = torch.cat([x_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], x[:, :, None].detach()], dim=2)
v_his = torch.cat([v_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], v[:, :, None].detach()], dim=2)
x_his = x_his.reshape(batch_size, num_particles, -1)
v_his = v_his.reshape(batch_size, num_particles, -1)
if cfg.sim.gripper_points:
x = x[:, :num_particles_orig]
v = v[:, :num_particles_orig]
enabled = enabled[:, :num_particles_orig]
if self.verbose:
print('x', x.min().item(), x.max().item())
print('v', v.min().item(), v.max().item())
if self.loss_factor_x > 0:
loss_x = self.criterion(x[enabled_mask > 0], gt_x[:, step][enabled_mask > 0]) * self.loss_factor_x
losses['loss_x'] += loss_x
self.losses_log['loss_x'] += loss_x.item()
if self.loss_factor_v > 0:
loss_v = self.criterion(v[enabled_mask > 0], gt_v[:, step][enabled_mask > 0]) * self.loss_factor_v
losses['loss_v'] += loss_v
self.losses_log['loss_v'] += loss_v.item()
with torch.no_grad():
if self.loss_factor_x > 0:
loss_x_trivial = self.criterion((x_in_gt + v_in_gt * cfg.sim.dt * cfg.sim.interval)[enabled_mask > 0], gt_x[:, step][enabled_mask > 0]) * self.loss_factor_x
self.losses_log['loss_x_trivial'] += loss_x_trivial.item()
if self.loss_factor_v > 0:
loss_v_trivial = self.criterion(v_in_gt[enabled_mask > 0], gt_v[:, step][enabled_mask > 0]) * self.loss_factor_v
self.losses_log['loss_v_trivial'] += loss_v_trivial.item()
loss_x_sanity = self.criterion(x_in[enabled_mask > 0], (x - v * cfg.sim.dt * cfg.sim.interval)[enabled_mask > 0]) * self.loss_factor_x
self.losses_log['loss_x_sanity'] += loss_x_sanity.item() # if > 0 then clipping issue
if step > 0:
loss_x_gt_sanity = self.criterion((gt_x[:, step - 1] + gt_v[:, step] * cfg.sim.dt * cfg.sim.interval)[enabled_mask > 0], gt_x[:, step][enabled_mask > 0]) * self.loss_factor_x
self.losses_log['loss_x_gt_sanity'] += loss_x_gt_sanity.item()
else:
loss_x_gt_sanity = self.criterion((x_in + gt_v[:, step] * cfg.sim.dt * cfg.sim.interval)[enabled_mask > 0], gt_x[:, step][enabled_mask > 0]) * self.loss_factor_x
self.losses_log['loss_x_gt_sanity'] += loss_x_gt_sanity.item()
if save and not cfg.debug:
self.logger.add_scalar('main/iteration', iteration, step=self.total_step_count)
for loss_k, loss_v in losses.items():
self.logger.add_scalar(f'main/{loss_k}', loss_v.item(), step=self.total_step_count)
self.total_step_count += 1
loss = sum(losses.values())
try:
loss.backward()
except Exception as e:
print(f'loss.backward() failed: {e.with_traceback()}')
continue
if self.material_requires_grad:
material_grad_norm = clip_grad_norm_(
self.material.parameters(),
max_norm=cfg.train.material_grad_max_norm,
error_if_nonfinite=True)
self.material_optimizer.step()
if (iteration + 1) % cfg.train.iteration_log_interval == 0:
msgs = [
cfg.train.name,
time.strftime('%H:%M:%S'),
'iteration {:{width}d}/{}'.format(iteration + 1, cfg.train.num_iterations, width=len(str(cfg.train.num_iterations))),
]
msgs.extend([
'pred.norm {:.4f}'.format(pred.norm().item()),
])
if self.material_requires_grad:
material_lr = self.material_optimizer.param_groups[0]['lr']
msgs.extend([
'e-lr {:.2e}'.format(material_lr),
'e-|grad| {:.4f}'.format(material_grad_norm),
])
for loss_k, loss_v in self.losses_log.items():
msgs.append('{} {:.8f}'.format(loss_k, loss_v / cfg.train.iteration_log_interval))
if save and not cfg.debug:
self.logger.add_scalar('stat/mean_{}'.format(loss_k), loss_v / cfg.train.iteration_log_interval, step=self.total_step_count)
msg = ','.join(msgs)
print('[{}]'.format(msg))
self.losses_log = defaultdict(int)
if save and not cfg.debug:
self.logger.add_scalar('stat/pred_norm', pred.norm().item(), step=self.total_step_count)
if self.material_requires_grad:
material_lr = self.material_optimizer.param_groups[0]['lr']
if save and not cfg.debug:
self.logger.add_scalar('stat/material_lr', material_lr, step=self.total_step_count)
self.logger.add_scalar('stat/material_grad_norm', material_grad_norm, step=self.total_step_count)
if save and (iteration + 1) % cfg.train.iteration_save_interval == 0:
torch.save({
'material': self.material.state_dict(),
}, self.ckpt_root / '{:06d}.pt'.format(iteration + 1))
if self.material_requires_grad:
self.material_lr_scheduler.step()
def eval_episode(self, iteration: int, episode: int, save: bool = True):
cfg = self.cfg
log_root: Path = root / 'log'
eval_name = f'{cfg.train.name}/eval/{cfg.train.dataset_name.split("/")[-1]}/{iteration:06d}'
exp_root: Path = log_root / eval_name
if save:
state_root: Path = exp_root / 'state'
mkdir(state_root, overwrite=cfg.overwrite, resume=cfg.resume)
episode_state_root = state_root / f'episode_{episode:04d}'
mkdir(episode_state_root, overwrite=cfg.overwrite, resume=cfg.resume)
OmegaConf.save(cfg, exp_root / 'hydra.yaml', resolve=True)
if cfg.train.dataset_name is None:
cfg.train.dataset_name = Path(cfg.train.name).parent / 'dataset'
assert cfg.train.source_dataset_name is not None
source_dataset_root = self.log_root / str(cfg.train.source_dataset_name)
assert os.path.exists(source_dataset_root)
eval_dataset = RealTeleopBatchDataset(
cfg,
dataset_root=self.log_root / cfg.train.dataset_name / 'state',
source_data_root=source_dataset_root,
device=self.torch_device,
num_steps=self.cfg.sim.num_steps,
eval_episode_name=f'episode_{episode:04d}',
)
eval_dataloader = dataloader_wrapper(
DataLoader(eval_dataset, batch_size=1, shuffle=False, num_workers=cfg.train.num_workers, pin_memory=True),
'dataset'
)
if cfg.sim.gripper_points:
eval_gripper_dataset = RealGripperDataset(
cfg,
device=self.torch_device,
)
eval_gripper_dataloader = dataloader_wrapper(
DataLoader(eval_gripper_dataset, batch_size=1, shuffle=False, num_workers=cfg.train.num_workers, pin_memory=True),
'gripper_dataset'
)
init_state, actions, gt_states, downsample_indices = next(eval_dataloader)
x, v, x_his, v_his, clip_bound, enabled, episode_vec = init_state
x = x.to(self.torch_device)
v = v.to(self.torch_device)
x_his = x_his.to(self.torch_device)
v_his = v_his.to(self.torch_device)
actions = actions.to(self.torch_device)
if cfg.sim.gripper_points:
gripper_points, _ = next(eval_gripper_dataloader)
gripper_points = gripper_points.to(self.torch_device)
gripper_x, gripper_v, gripper_mask = transform_gripper_points(cfg, gripper_points, actions) # (bsz, num_steps, num_grippers, 3)
gt_x, gt_v = gt_states
gt_x = gt_x.to(self.torch_device)
gt_v = gt_v.to(self.torch_device)
# gt_states: (bsz, num_steps_total)
batch_size = gt_x.shape[0]
num_steps_total = gt_x.shape[1]
num_particles = gt_x.shape[2]
assert batch_size == 1
if cfg.sim.gripper_points:
num_gripper_particles = gripper_x.shape[2]
num_particles_orig = num_particles
num_particles = num_particles + num_gripper_particles
sim = CacheDiffSimWithFrictionBatch(cfg, num_steps_total, batch_size, self.wp_device, requires_grad=True)
statics = StaticsBatch()
statics.init(shape=(batch_size, num_particles), device=self.wp_device)
statics.update_clip_bound(clip_bound)
statics.update_enabled(enabled)
colliders = CollidersBatch()
self.material.eval()
self.friction.eval()
if cfg.sim.gripper_points:
assert not cfg.sim.gripper_forcing
num_grippers = 0
else:
num_grippers = cfg.sim.num_grippers
colliders.init(shape=(batch_size, num_grippers), device=self.wp_device)
if num_grippers > 0:
assert len(actions.shape) > 2
colliders.initialize_grippers(actions[:, 0])
enabled = enabled.to(self.torch_device)
enabled_mask = enabled.unsqueeze(-1).repeat(1, 1, 3) # (bsz, num_particles, 3)
colliders_save = colliders.export()
colliders_save = {key: torch.from_numpy(colliders_save[key])[0].to(x.device).to(x.dtype) for key in colliders_save}
ckpt = dict(x=x[0], v=v[0], **colliders_save)
if save:
torch.save(ckpt, episode_state_root / f'{0:04d}.pt')
losses = {}
with torch.no_grad():
for step in trange(num_steps_total):
if num_grippers > 0:
colliders.update_grippers(actions[:, step])
if cfg.sim.gripper_forcing:
x_in = x.clone()
else:
x_in = None
if cfg.sim.gripper_points:
x = torch.cat([x, gripper_x[:, step]], dim=1) # gripper_points: (bsz, num_steps, num_particles, 3)
v = torch.cat([v, gripper_v[:, step]], dim=1)
x_his = torch.cat([x_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=x_his.device, dtype=x_his.dtype)], dim=1)
v_his = torch.cat([v_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=v_his.device, dtype=v_his.dtype)], dim=1)
if enabled.shape[1] < num_particles:
enabled = torch.cat([enabled, gripper_mask[:, step]], dim=1)
statics.update_enabled(enabled.cpu())
pred = self.material(x, v, x_his, v_his, enabled)
if pred.isnan().any():
print('pred isnan', pred.min().item(), pred.max().item())
break
if pred.isinf().any():
print('pred isinf', pred.min().item(), pred.max().item())
break
x, v = sim(statics, colliders, step, x, v, self.friction.mu[None].repeat(batch_size, 1), pred)
if cfg.sim.gripper_forcing:
assert not cfg.sim.gripper_points
gripper_xyz = actions[:, step, :, :3] # (bsz, num_grippers, 3)
gripper_v = actions[:, step, :, 3:6] # (bsz, num_grippers, 3)
x_from_gripper = x_in[:, None] - gripper_xyz[:, :, None] # (bsz, num_grippers, num_particles, 3)
x_gripper_distance = torch.norm(x_from_gripper, dim=-1) # (bsz, num_grippers, num_particles)
x_gripper_distance_mask = x_gripper_distance < cfg.model.gripper_radius
x_gripper_distance_mask = x_gripper_distance_mask.unsqueeze(-1).repeat(1, 1, 1, 3) # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = gripper_v[:, :, None].repeat(1, 1, num_particles, 1) # (bsz, num_grippers, num_particles, 3)
gripper_closed = actions[:, step, :, -1] < 0.5 # (bsz, num_grippers) # 1: open, 0: close
x_gripper_distance_mask = torch.logical_and(x_gripper_distance_mask, gripper_closed[:, :, None, None].repeat(1, 1, num_particles, 3))
gripper_quat_vel = actions[:, step, :, 10:13] # (bsz, num_grippers, 3)
gripper_angular_vel = torch.linalg.norm(gripper_quat_vel, dim=-1, keepdims=True) # (bsz, num_grippers, 1)
gripper_quat_axis = gripper_quat_vel / (gripper_angular_vel + 1e-10) # (bsz, num_grippers, 3)
grid_from_gripper_axis = x_from_gripper - \
(gripper_quat_axis[:, :, None] * x_from_gripper).sum(dim=-1, keepdims=True) * gripper_quat_axis[:, :, None] # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = torch.cross(gripper_quat_vel[:, :, None], grid_from_gripper_axis, dim=-1) + gripper_v_expand
for i in range(gripper_xyz.shape[1]):
x_gripper_distance_mask_single = x_gripper_distance_mask[:, i]
x[x_gripper_distance_mask_single] = x_in[x_gripper_distance_mask_single] + cfg.sim.dt * gripper_v_expand[:, i][x_gripper_distance_mask_single]
v[x_gripper_distance_mask_single] = gripper_v_expand[:, i][x_gripper_distance_mask_single]
if cfg.sim.n_history > 0:
if cfg.sim.gripper_points:
x_his_particles = torch.cat([x_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], x[:, :num_particles_orig, None].detach()], dim=2)
v_his_particles = torch.cat([v_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], v[:, :num_particles_orig, None].detach()], dim=2)
x_his = x_his_particles.reshape(batch_size, num_particles_orig, -1)
v_his = v_his_particles.reshape(batch_size, num_particles_orig, -1)
else:
x_his = torch.cat([x_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], x[:, :, None].detach()], dim=2)
v_his = torch.cat([v_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], v[:, :, None].detach()], dim=2)
x_his = x_his.reshape(batch_size, num_particles, -1)
v_his = v_his.reshape(batch_size, num_particles, -1)
if cfg.sim.gripper_points:
extra_save = {
'gripper_x': gripper_x[0, step],
'gripper_v': gripper_v[0, step],
'gripper_actions': actions[0, step],
}
x = x[:, :num_particles_orig]
v = v[:, :num_particles_orig]
enabled = enabled[:, :num_particles_orig]
else:
extra_save = {}
colliders_save = colliders.export()
colliders_save = {key: torch.from_numpy(colliders_save[key])[0].to(x.device).to(x.dtype) for key in colliders_save}
loss_x = nn.functional.mse_loss(x[enabled_mask > 0], gt_x[:, step][enabled_mask > 0])
loss_v = nn.functional.mse_loss(v[enabled_mask > 0], gt_v[:, step][enabled_mask > 0])
losses[step] = dict(loss_x=loss_x.item(), loss_v=loss_v.item())
ckpt = dict(x=x[0], v=v[0], **colliders_save, **extra_save)
if save and step % cfg.sim.skip_frame == 0:
torch.save(ckpt, episode_state_root / f'{int(step / cfg.sim.skip_frame):04d}.pt')
metrics = None
if save:
for loss_k in losses[0].keys():
plt.figure(figsize=(10, 5))
loss_list = [losses[step][loss_k] for step in losses]
plt.plot(loss_list)
plt.title(loss_k)
plt.grid()
plt.savefig(state_root / f'episode_{episode:04d}_{loss_k}.png', dpi=300)
# particle visualization
if self.use_pv:
do_train_pv(
cfg,
log_root,
iteration,
[f'episode_{episode:04d}'],
eval_dirname=f'eval',
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
)
# gaussian splatting visualization
if self.use_gs:
from .gs import do_gs
do_gs(
cfg,
log_root,
iteration,
[f'episode_{episode:04d}'],
eval_dirname=f'eval',
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
camera_id=1,
with_mask=True,
with_bg=True,
)
# particle visualization of ground truth
if self.use_pv:
_ = do_dataset_pv(
cfg,
log_root / str(cfg.train.dataset_name),
[f'episode_{episode:04d}'],
save_dir=log_root / f'{cfg.train.name}/eval/{cfg.train.dataset_name.split("/")[-1]}/{iteration:06d}/pv',
downsample_indices=downsample_indices,
)
metrics = do_metric(
cfg,
log_root,
iteration,
[f'episode_{episode:04d}'],
downsample_indices,
eval_dirname=f'eval',
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
camera_id=1,
use_gs=self.use_gs,
)
return metrics
def eval(self, eval_iteration: int, save: bool = True):
cfg = self.cfg
metrics_list = []
start_episode = cfg.train.eval_start_episode
end_episode = cfg.train.eval_end_episode if save else cfg.train.eval_start_episode + 2
for episode in range(start_episode, end_episode):
metrics = self.eval_episode(eval_iteration, episode, save=save)
metrics_list.append(metrics)
if not save:
return
metrics_list = np.array(metrics_list)[:, 0] # (n_episodes, n_frames, 10 or 3)
if self.use_gs:
metric_names = ['mse', 'chamfer', 'emd', 'jscore', 'fscore', 'jfscore', 'perception', 'psnr', 'ssim']
else:
metric_names = ['mse', 'chamfer', 'emd']
median_metric = np.median(metrics_list, axis=0)
step_75_metric = np.percentile(metrics_list, 75, axis=0)
step_25_metric = np.percentile(metrics_list, 25, axis=0)
mean_metric = np.mean(metrics_list, axis=0)
std_metric = np.std(metrics_list, axis=0)
for i, metric_name in enumerate(metric_names):
# plot error
x = np.arange(1, len(median_metric) + 1)
plt.figure(figsize=(8, 5))
plt.plot(x, median_metric[:, i])
plt.xlabel(f"prediction steps, dt={cfg.sim.dt}")
plt.ylabel(metric_name)
plt.grid()
ax = plt.gca()
x = np.arange(1, len(median_metric) + 1)
ax.fill_between(x, step_25_metric[:, i], step_75_metric[:, i], alpha=0.2)
save_dir = root / 'log' / cfg.train.name / 'eval' / cfg.train.dataset_name.split("/")[-1] / f'{eval_iteration:06d}' / 'metric'
plt.tight_layout()
plt.savefig(os.path.join(save_dir, f'{i:02d}-{metric_name}.png'), dpi=300)
plt.close()
# send to wandb
if not cfg.debug:
for i, metric_name in enumerate(metric_names):
self.logger.add_scalar(f'metric/{metric_name}-mean', mean_metric[:, i].mean(), step=self.total_step_count)
self.logger.add_scalar(f'metric/{metric_name}-std', std_metric[:, i].mean(), step=self.total_step_count)
img = np.array(Image.open(os.path.join(save_dir, f'{i:02d}-{metric_name}.png')).convert('RGB'))
self.logger.add_image(f'metric_curve/{metric_name}', img, step=self.total_step_count)
def test_cuda_mem(self):
self.init_train()
self.train(0, 10, save=False)
self.eval(10, save=False)
@hydra.main(version_base='1.2', config_path=str(root / 'cfg'), config_name='default')
def main(cfg: DictConfig):
trainer = Trainer(cfg)
trainer.load_train_dataset()
trainer.test_cuda_mem()
trainer.init_train()
for iteration in range(cfg.train.resume_iteration, cfg.train.num_iterations, cfg.train.iteration_eval_interval):
start_iteration = iteration
end_iteration = min(iteration + cfg.train.iteration_eval_interval, cfg.train.num_iterations)
trainer.train(start_iteration, end_iteration)
trainer.eval(end_iteration)
if __name__ == '__main__':
main()