File size: 38,126 Bytes
f96995c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 |
from pathlib import Path
import random
import time
import os
import matplotlib.pyplot as plt
from collections import defaultdict
from tqdm import tqdm, trange
import hydra
from omegaconf import DictConfig, OmegaConf
import numpy as np
from PIL import Image
import warp as wp
import matplotlib.pyplot as plt
import torch
import torch.backends.cudnn
import torch.nn as nn
from torch.nn.utils import clip_grad_norm_
from torch.utils.data import DataLoader
import kornia
import sys
sys.path.append(str(Path(__file__).parent.parent.parent))
sys.path.append(str(Path(__file__).parent.parent))
from pgnd.sim import Friction, CacheDiffSimWithFrictionBatch, StaticsBatch, CollidersBatch
from pgnd.material import PGNDModel
from pgnd.data import RealTeleopBatchDataset, RealGripperDataset
from pgnd.utils import Logger, get_root, mkdir
from train.pv_train import do_train_pv
from train.pv_dataset import do_dataset_pv
from train.metric_eval import do_metric
root: Path = get_root(__file__)
def dataloader_wrapper(dataloader, name):
cnt = 0
while True:
cnt += 1
for data in dataloader:
yield data
def transform_gripper_points(cfg, gripper_points, gripper):
dx = cfg.sim.num_grids[-1]
gripper_xyz = gripper[:, :, :, :3] # (bsz, num_steps, num_grippers, 3)
gripper_v = gripper[:, :, :, 3:6] # (bsz, num_steps, num_grippers, 3)
gripper_quat = gripper[:, :, :, 6:10] # (bsz, num_steps, num_grippers, 4)
num_steps = gripper_xyz.shape[1]
num_grippers = gripper_xyz.shape[2]
gripper_mat = kornia.geometry.conversions.quaternion_to_rotation_matrix(gripper_quat) # (bsz, num_steps, num_grippers, 3, 3)
gripper_points = gripper_points[:, None, None].repeat(1, num_steps, num_grippers, 1, 1) # (bsz, num_steps, num_grippers, num_points, 3)
gripper_x = gripper_points @ gripper_mat + gripper_xyz[:, :, :, None] # (bsz, num_steps, num_grippers, num_points, 3)
bsz = gripper_x.shape[0]
num_points = gripper_x.shape[3]
gripper_quat_vel = gripper[:, :, :, 10:13] # (bsz, num_steps, num_grippers, 3)
gripper_angular_vel = torch.linalg.norm(gripper_quat_vel, dim=-1, keepdims=True) # (bsz, num_steps, num_grippers, 1)
gripper_quat_axis = gripper_quat_vel / (gripper_angular_vel + 1e-10) # (bsz, num_steps, num_grippers, 3)
gripper_v_expand = gripper_v[:, :, :, None].repeat(1, 1, 1, num_points, 1) # (bsz, num_grippers, num_points, 3)
gripper_points_from_axis = gripper_x - gripper_xyz[:, :, :, None] # (bsz, num_steps, num_grippers, num_points, 3)
grid_from_gripper_axis = gripper_points_from_axis - \
(gripper_quat_axis[:, :, :, None] * gripper_points_from_axis).sum(dim=-1, keepdims=True) * gripper_quat_axis[:, :, :, None] # (bsz, num_steps, num_grippers, num_particles, 3)
gripper_v_expand = torch.cross(gripper_quat_vel[:, :, :, None], grid_from_gripper_axis, dim=-1) + gripper_v_expand
gripper_v = gripper_v_expand.reshape(bsz, num_steps, num_grippers * num_points, 3)
gripper_x = gripper_x.reshape(bsz, num_steps, num_grippers * num_points, 3)
gripper_x_mask = (gripper_x[:, :, :, 0] > dx * (cfg.model.clip_bound + 0.5)) \
& (gripper_x[:, :, :, 0] < 1 - (dx * (cfg.model.clip_bound + 0.5))) \
& (gripper_x[:, :, :, 1] > dx * (cfg.model.clip_bound + 0.5)) \
& (gripper_x[:, :, :, 1] < 1 - (dx * (cfg.model.clip_bound + 0.5))) \
& (gripper_x[:, :, :, 2] > dx * (cfg.model.clip_bound + 0.5)) \
& (gripper_x[:, :, :, 2] < 1 - (dx * (cfg.model.clip_bound + 0.5)))
return gripper_x, gripper_v, gripper_x_mask
class Trainer:
def __init__(self, cfg: DictConfig):
self.cfg = cfg
print(OmegaConf.to_yaml(cfg, resolve=True))
wp.init()
wp.ScopedTimer.enabled = False
wp.set_module_options({'fast_math': False})
wp.config.verify_autograd_array_access = True
gpus = [int(gpu) for gpu in cfg.gpus]
wp_devices = [wp.get_device(f'cuda:{gpu}') for gpu in gpus]
torch_devices = [torch.device(f'cuda:{gpu}') for gpu in gpus]
device_count = len(torch_devices)
assert device_count == 1
self.wp_device = wp_devices[0]
self.torch_device = torch_devices[0]
seed = cfg.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.autograd.set_detect_anomaly(True)
torch.backends.cudnn.benchmark = True
# path
log_root: Path = root / 'log'
exp_root: Path = log_root / cfg.train.name
mkdir(exp_root, overwrite=cfg.overwrite, resume=cfg.resume)
OmegaConf.save(cfg, exp_root / 'hydra.yaml', resolve=True)
ckpt_root: Path = exp_root / 'ckpt'
ckpt_root.mkdir(parents=True, exist_ok=True)
self.log_root = log_root
self.ckpt_root = ckpt_root
self.use_pv = cfg.train.use_pv
self.dataset_non_overwrite = cfg.train.dataset_non_overwrite
if not self.use_pv:
print('not using pv rendering...')
assert self.cfg.train.source_dataset_name is not None
self.use_gs = cfg.train.use_gs
# logging
self.verbose = False
if not cfg.debug:
logger = Logger(cfg, project='pgnd-train')
self.logger = logger
def load_train_dataset(self):
cfg = self.cfg
if cfg.train.dataset_name is None:
cfg.train.dataset_name = Path(cfg.train.name).parent / 'dataset'
source_dataset_root = self.log_root / str(cfg.train.source_dataset_name)
assert os.path.exists(source_dataset_root)
dataset = RealTeleopBatchDataset(
cfg,
dataset_root=self.log_root / cfg.train.dataset_name / 'state',
source_data_root=source_dataset_root,
device=self.torch_device,
num_steps=cfg.sim.num_steps_train,
train=True,
dataset_non_overwrite=self.dataset_non_overwrite,
)
self.dataset = dataset
if cfg.sim.gripper_points:
gripper_dataset = RealGripperDataset(
cfg,
device=self.torch_device,
train=True,
)
self.gripper_dataset = gripper_dataset
def init_train(self):
cfg = self.cfg
dataloader = dataloader_wrapper(
DataLoader(self.dataset, batch_size=cfg.train.batch_size, shuffle=True, num_workers=cfg.train.num_workers, pin_memory=True, drop_last=True),
'dataset'
)
self.dataloader = dataloader
if cfg.sim.gripper_points:
gripper_dataloader = dataloader_wrapper(
DataLoader(self.gripper_dataset, batch_size=cfg.train.batch_size, shuffle=True, num_workers=cfg.train.num_workers, pin_memory=True, drop_last=True),
'gripper_dataset'
)
self.gripper_dataloader = gripper_dataloader
# material model
material_requires_grad = cfg.model.material.requires_grad
material: nn.Module = PGNDModel(cfg)
material.to(self.torch_device)
material.requires_grad_(material_requires_grad)
material.train(True)
# friction
friction: nn.Module = Friction(np.array([cfg.model.friction.value]))
friction.to(self.torch_device)
friction.requires_grad_(False)
friction.train(False)
if cfg.resume and cfg.train.resume_iteration > 0:
assert (self.ckpt_root / f'{cfg.train.resume_iteration:06d}.pt').exists()
ckpt = torch.load(self.ckpt_root / f'{cfg.train.resume_iteration:06d}.pt', map_location=self.torch_device)
material.load_state_dict(ckpt['material'])
elif cfg.model.ckpt:
ckpt = torch.load(self.log_root / cfg.model.ckpt, map_location=self.torch_device)
material.load_state_dict(ckpt['material'])
if not (cfg.resume and cfg.train.resume_iteration > 0):
torch.save({
'material': material.state_dict(),
}, self.ckpt_root / f'{cfg.train.resume_iteration:06d}.pt')
if material_requires_grad:
material_optimizer = torch.optim.Adam(material.parameters(), lr=cfg.train.material_lr, weight_decay=cfg.train.material_wd)
material_lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer=material_optimizer, T_max=cfg.train.num_iterations)
if cfg.train.resume_iteration > 0:
material_lr_scheduler.last_epoch = cfg.train.resume_iteration - 1
material_lr_scheduler.step()
criterion = nn.MSELoss(reduction='mean')
criterion.to(self.torch_device)
total_step_count = 0
if cfg.resume and cfg.train.resume_iteration > 0:
total_step_count = cfg.train.resume_iteration * cfg.sim.num_steps_train
losses_log = defaultdict(int)
loss_factor_v = cfg.train.loss_factor_v
loss_factor_x = cfg.train.loss_factor_x
self.loss_factor_v = loss_factor_v
self.loss_factor_x = loss_factor_x
self.material_requires_grad = material_requires_grad
self.material = material
self.material_optimizer = material_optimizer
self.material_lr_scheduler = material_lr_scheduler
self.criterion = criterion
self.total_step_count = total_step_count
self.losses_log = losses_log
self.friction = friction
def train(self, start_iteration, end_iteration, save=True):
cfg = self.cfg
self.material.train(True)
for iteration in trange(start_iteration, end_iteration, dynamic_ncols=True):
if self.material_requires_grad:
self.material_optimizer.zero_grad()
losses = defaultdict(int)
init_state, actions, gt_states = next(self.dataloader)
x, v, x_his, v_his, clip_bound, enabled, episode_vec = init_state
x = x.to(self.torch_device)
v = v.to(self.torch_device)
x_his = x_his.to(self.torch_device)
v_his = v_his.to(self.torch_device)
actions = actions.to(self.torch_device)
if cfg.sim.gripper_points:
gripper_points, _ = next(self.gripper_dataloader)
gripper_points = gripper_points.to(self.torch_device)
gripper_x, gripper_v, gripper_mask = transform_gripper_points(cfg, gripper_points, actions) # (bsz, num_steps, num_grippers, 3)
gt_x, gt_v = gt_states
gt_x = gt_x.to(self.torch_device)
gt_v = gt_v.to(self.torch_device)
# gt_x: (bsz, num_steps_total)
batch_size = gt_x.shape[0]
num_steps_total = gt_x.shape[1]
num_particles = gt_x.shape[2]
if cfg.sim.gripper_points:
num_gripper_particles = gripper_x.shape[2]
num_particles_orig = num_particles
num_particles = num_particles + num_gripper_particles
sim = CacheDiffSimWithFrictionBatch(cfg, num_steps_total, batch_size, self.wp_device, requires_grad=True)
statics = StaticsBatch()
statics.init(shape=(batch_size, num_particles), device=self.wp_device)
statics.update_clip_bound(clip_bound)
statics.update_enabled(enabled)
colliders = CollidersBatch()
if cfg.sim.gripper_points:
assert not cfg.sim.gripper_forcing
num_grippers = 0
else:
num_grippers = cfg.sim.num_grippers
colliders.init(shape=(batch_size, num_grippers), device=self.wp_device)
if num_grippers > 0:
assert len(actions.shape) > 2
colliders.initialize_grippers(actions[:, 0])
enabled = enabled.to(self.torch_device) # (bsz, num_particles)
enabled_mask = enabled.unsqueeze(-1).repeat(1, 1, 3) # (bsz, num_particles, 3)
for step in range(num_steps_total):
if num_grippers > 0:
colliders.update_grippers(actions[:, step])
x_in = x.clone()
if step == 0:
x_in_gt = x.clone()
v_in_gt = v.clone()
else:
x_in_gt = x_in_gt + v_in_gt * cfg.sim.dt * cfg.sim.interval
if cfg.sim.gripper_points:
x = torch.cat([x, gripper_x[:, step]], dim=1) # gripper_x: (bsz, num_steps, num_particles, 3)
v = torch.cat([v, gripper_v[:, step]], dim=1)
x_his = torch.cat([x_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=x_his.device, dtype=x_his.dtype)], dim=1)
v_his = torch.cat([v_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=v_his.device, dtype=v_his.dtype)], dim=1)
if enabled.shape[1] < num_particles:
enabled = torch.cat([enabled, gripper_mask[:, step]], dim=1)
statics.update_enabled(enabled.cpu())
pred = self.material(x, v, x_his, v_his, enabled)
x, v = sim(statics, colliders, step, x, v, self.friction.mu.clone()[None].repeat(batch_size, 1), pred)
if cfg.sim.gripper_forcing:
assert not cfg.sim.gripper_points
gripper_xyz = actions[:, step, :, :3] # (bsz, num_grippers, 3)
gripper_v = actions[:, step, :, 3:6] # (bsz, num_grippers, 3)
x_from_gripper = x_in[:, None] - gripper_xyz[:, :, None] # (bsz, num_grippers, num_particles, 3)
x_gripper_distance = torch.norm(x_from_gripper, dim=-1) # (bsz, num_grippers, num_particles)
x_gripper_distance_mask = x_gripper_distance < cfg.model.gripper_radius
x_gripper_distance_mask = x_gripper_distance_mask.unsqueeze(-1).repeat(1, 1, 1, 3) # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = gripper_v[:, :, None].repeat(1, 1, num_particles, 1) # (bsz, num_grippers, num_particles, 3)
gripper_closed = actions[:, step, :, -1] < 0.5 # (bsz, num_grippers) # 1: open, 0: close
x_gripper_distance_mask = torch.logical_and(x_gripper_distance_mask, gripper_closed[:, :, None, None].repeat(1, 1, num_particles, 3))
gripper_quat_vel = actions[:, step, :, 10:13] # (bsz, num_grippers, 3)
gripper_angular_vel = torch.linalg.norm(gripper_quat_vel, dim=-1, keepdims=True) # (bsz, num_grippers, 1)
gripper_quat_axis = gripper_quat_vel / (gripper_angular_vel + 1e-10) # (bsz, num_grippers, 3)
grid_from_gripper_axis = x_from_gripper - \
(gripper_quat_axis[:, :, None] * x_from_gripper).sum(dim=-1, keepdims=True) * gripper_quat_axis[:, :, None] # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = torch.cross(gripper_quat_vel[:, :, None], grid_from_gripper_axis, dim=-1) + gripper_v_expand
for i in range(gripper_xyz.shape[1]):
x_gripper_distance_mask_single = x_gripper_distance_mask[:, i]
x[x_gripper_distance_mask_single] = x_in[x_gripper_distance_mask_single] + cfg.sim.dt * gripper_v_expand[:, i][x_gripper_distance_mask_single]
v[x_gripper_distance_mask_single] = gripper_v_expand[:, i][x_gripper_distance_mask_single]
if cfg.sim.n_history > 0:
if cfg.sim.gripper_points:
x_his_particles = torch.cat([x_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], x[:, :num_particles_orig, None].detach()], dim=2)
v_his_particles = torch.cat([v_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], v[:, :num_particles_orig, None].detach()], dim=2)
x_his = x_his_particles.reshape(batch_size, num_particles_orig, -1)
v_his = v_his_particles.reshape(batch_size, num_particles_orig, -1)
else:
x_his = torch.cat([x_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], x[:, :, None].detach()], dim=2)
v_his = torch.cat([v_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], v[:, :, None].detach()], dim=2)
x_his = x_his.reshape(batch_size, num_particles, -1)
v_his = v_his.reshape(batch_size, num_particles, -1)
if cfg.sim.gripper_points:
x = x[:, :num_particles_orig]
v = v[:, :num_particles_orig]
enabled = enabled[:, :num_particles_orig]
if self.verbose:
print('x', x.min().item(), x.max().item())
print('v', v.min().item(), v.max().item())
if self.loss_factor_x > 0:
loss_x = self.criterion(x[enabled_mask > 0], gt_x[:, step][enabled_mask > 0]) * self.loss_factor_x
losses['loss_x'] += loss_x
self.losses_log['loss_x'] += loss_x.item()
if self.loss_factor_v > 0:
loss_v = self.criterion(v[enabled_mask > 0], gt_v[:, step][enabled_mask > 0]) * self.loss_factor_v
losses['loss_v'] += loss_v
self.losses_log['loss_v'] += loss_v.item()
with torch.no_grad():
if self.loss_factor_x > 0:
loss_x_trivial = self.criterion((x_in_gt + v_in_gt * cfg.sim.dt * cfg.sim.interval)[enabled_mask > 0], gt_x[:, step][enabled_mask > 0]) * self.loss_factor_x
self.losses_log['loss_x_trivial'] += loss_x_trivial.item()
if self.loss_factor_v > 0:
loss_v_trivial = self.criterion(v_in_gt[enabled_mask > 0], gt_v[:, step][enabled_mask > 0]) * self.loss_factor_v
self.losses_log['loss_v_trivial'] += loss_v_trivial.item()
loss_x_sanity = self.criterion(x_in[enabled_mask > 0], (x - v * cfg.sim.dt * cfg.sim.interval)[enabled_mask > 0]) * self.loss_factor_x
self.losses_log['loss_x_sanity'] += loss_x_sanity.item() # if > 0 then clipping issue
if step > 0:
loss_x_gt_sanity = self.criterion((gt_x[:, step - 1] + gt_v[:, step] * cfg.sim.dt * cfg.sim.interval)[enabled_mask > 0], gt_x[:, step][enabled_mask > 0]) * self.loss_factor_x
self.losses_log['loss_x_gt_sanity'] += loss_x_gt_sanity.item()
else:
loss_x_gt_sanity = self.criterion((x_in + gt_v[:, step] * cfg.sim.dt * cfg.sim.interval)[enabled_mask > 0], gt_x[:, step][enabled_mask > 0]) * self.loss_factor_x
self.losses_log['loss_x_gt_sanity'] += loss_x_gt_sanity.item()
if save and not cfg.debug:
self.logger.add_scalar('main/iteration', iteration, step=self.total_step_count)
for loss_k, loss_v in losses.items():
self.logger.add_scalar(f'main/{loss_k}', loss_v.item(), step=self.total_step_count)
self.total_step_count += 1
loss = sum(losses.values())
try:
loss.backward()
except Exception as e:
print(f'loss.backward() failed: {e.with_traceback()}')
continue
if self.material_requires_grad:
material_grad_norm = clip_grad_norm_(
self.material.parameters(),
max_norm=cfg.train.material_grad_max_norm,
error_if_nonfinite=True)
self.material_optimizer.step()
if (iteration + 1) % cfg.train.iteration_log_interval == 0:
msgs = [
cfg.train.name,
time.strftime('%H:%M:%S'),
'iteration {:{width}d}/{}'.format(iteration + 1, cfg.train.num_iterations, width=len(str(cfg.train.num_iterations))),
]
msgs.extend([
'pred.norm {:.4f}'.format(pred.norm().item()),
])
if self.material_requires_grad:
material_lr = self.material_optimizer.param_groups[0]['lr']
msgs.extend([
'e-lr {:.2e}'.format(material_lr),
'e-|grad| {:.4f}'.format(material_grad_norm),
])
for loss_k, loss_v in self.losses_log.items():
msgs.append('{} {:.8f}'.format(loss_k, loss_v / cfg.train.iteration_log_interval))
if save and not cfg.debug:
self.logger.add_scalar('stat/mean_{}'.format(loss_k), loss_v / cfg.train.iteration_log_interval, step=self.total_step_count)
msg = ','.join(msgs)
print('[{}]'.format(msg))
self.losses_log = defaultdict(int)
if save and not cfg.debug:
self.logger.add_scalar('stat/pred_norm', pred.norm().item(), step=self.total_step_count)
if self.material_requires_grad:
material_lr = self.material_optimizer.param_groups[0]['lr']
if save and not cfg.debug:
self.logger.add_scalar('stat/material_lr', material_lr, step=self.total_step_count)
self.logger.add_scalar('stat/material_grad_norm', material_grad_norm, step=self.total_step_count)
if save and (iteration + 1) % cfg.train.iteration_save_interval == 0:
torch.save({
'material': self.material.state_dict(),
}, self.ckpt_root / '{:06d}.pt'.format(iteration + 1))
if self.material_requires_grad:
self.material_lr_scheduler.step()
def eval_episode(self, iteration: int, episode: int, save: bool = True):
cfg = self.cfg
log_root: Path = root / 'log'
eval_name = f'{cfg.train.name}/eval/{cfg.train.dataset_name.split("/")[-1]}/{iteration:06d}'
exp_root: Path = log_root / eval_name
if save:
state_root: Path = exp_root / 'state'
mkdir(state_root, overwrite=cfg.overwrite, resume=cfg.resume)
episode_state_root = state_root / f'episode_{episode:04d}'
mkdir(episode_state_root, overwrite=cfg.overwrite, resume=cfg.resume)
OmegaConf.save(cfg, exp_root / 'hydra.yaml', resolve=True)
if cfg.train.dataset_name is None:
cfg.train.dataset_name = Path(cfg.train.name).parent / 'dataset'
assert cfg.train.source_dataset_name is not None
source_dataset_root = self.log_root / str(cfg.train.source_dataset_name)
assert os.path.exists(source_dataset_root)
eval_dataset = RealTeleopBatchDataset(
cfg,
dataset_root=self.log_root / cfg.train.dataset_name / 'state',
source_data_root=source_dataset_root,
device=self.torch_device,
num_steps=self.cfg.sim.num_steps,
eval_episode_name=f'episode_{episode:04d}',
)
eval_dataloader = dataloader_wrapper(
DataLoader(eval_dataset, batch_size=1, shuffle=False, num_workers=cfg.train.num_workers, pin_memory=True),
'dataset'
)
if cfg.sim.gripper_points:
eval_gripper_dataset = RealGripperDataset(
cfg,
device=self.torch_device,
)
eval_gripper_dataloader = dataloader_wrapper(
DataLoader(eval_gripper_dataset, batch_size=1, shuffle=False, num_workers=cfg.train.num_workers, pin_memory=True),
'gripper_dataset'
)
init_state, actions, gt_states, downsample_indices = next(eval_dataloader)
x, v, x_his, v_his, clip_bound, enabled, episode_vec = init_state
x = x.to(self.torch_device)
v = v.to(self.torch_device)
x_his = x_his.to(self.torch_device)
v_his = v_his.to(self.torch_device)
actions = actions.to(self.torch_device)
if cfg.sim.gripper_points:
gripper_points, _ = next(eval_gripper_dataloader)
gripper_points = gripper_points.to(self.torch_device)
gripper_x, gripper_v, gripper_mask = transform_gripper_points(cfg, gripper_points, actions) # (bsz, num_steps, num_grippers, 3)
gt_x, gt_v = gt_states
gt_x = gt_x.to(self.torch_device)
gt_v = gt_v.to(self.torch_device)
# gt_states: (bsz, num_steps_total)
batch_size = gt_x.shape[0]
num_steps_total = gt_x.shape[1]
num_particles = gt_x.shape[2]
assert batch_size == 1
if cfg.sim.gripper_points:
num_gripper_particles = gripper_x.shape[2]
num_particles_orig = num_particles
num_particles = num_particles + num_gripper_particles
sim = CacheDiffSimWithFrictionBatch(cfg, num_steps_total, batch_size, self.wp_device, requires_grad=True)
statics = StaticsBatch()
statics.init(shape=(batch_size, num_particles), device=self.wp_device)
statics.update_clip_bound(clip_bound)
statics.update_enabled(enabled)
colliders = CollidersBatch()
self.material.eval()
self.friction.eval()
if cfg.sim.gripper_points:
assert not cfg.sim.gripper_forcing
num_grippers = 0
else:
num_grippers = cfg.sim.num_grippers
colliders.init(shape=(batch_size, num_grippers), device=self.wp_device)
if num_grippers > 0:
assert len(actions.shape) > 2
colliders.initialize_grippers(actions[:, 0])
enabled = enabled.to(self.torch_device)
enabled_mask = enabled.unsqueeze(-1).repeat(1, 1, 3) # (bsz, num_particles, 3)
colliders_save = colliders.export()
colliders_save = {key: torch.from_numpy(colliders_save[key])[0].to(x.device).to(x.dtype) for key in colliders_save}
ckpt = dict(x=x[0], v=v[0], **colliders_save)
if save:
torch.save(ckpt, episode_state_root / f'{0:04d}.pt')
losses = {}
with torch.no_grad():
for step in trange(num_steps_total):
if num_grippers > 0:
colliders.update_grippers(actions[:, step])
if cfg.sim.gripper_forcing:
x_in = x.clone()
else:
x_in = None
if cfg.sim.gripper_points:
x = torch.cat([x, gripper_x[:, step]], dim=1) # gripper_points: (bsz, num_steps, num_particles, 3)
v = torch.cat([v, gripper_v[:, step]], dim=1)
x_his = torch.cat([x_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=x_his.device, dtype=x_his.dtype)], dim=1)
v_his = torch.cat([v_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=v_his.device, dtype=v_his.dtype)], dim=1)
if enabled.shape[1] < num_particles:
enabled = torch.cat([enabled, gripper_mask[:, step]], dim=1)
statics.update_enabled(enabled.cpu())
pred = self.material(x, v, x_his, v_his, enabled)
if pred.isnan().any():
print('pred isnan', pred.min().item(), pred.max().item())
break
if pred.isinf().any():
print('pred isinf', pred.min().item(), pred.max().item())
break
x, v = sim(statics, colliders, step, x, v, self.friction.mu[None].repeat(batch_size, 1), pred)
if cfg.sim.gripper_forcing:
assert not cfg.sim.gripper_points
gripper_xyz = actions[:, step, :, :3] # (bsz, num_grippers, 3)
gripper_v = actions[:, step, :, 3:6] # (bsz, num_grippers, 3)
x_from_gripper = x_in[:, None] - gripper_xyz[:, :, None] # (bsz, num_grippers, num_particles, 3)
x_gripper_distance = torch.norm(x_from_gripper, dim=-1) # (bsz, num_grippers, num_particles)
x_gripper_distance_mask = x_gripper_distance < cfg.model.gripper_radius
x_gripper_distance_mask = x_gripper_distance_mask.unsqueeze(-1).repeat(1, 1, 1, 3) # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = gripper_v[:, :, None].repeat(1, 1, num_particles, 1) # (bsz, num_grippers, num_particles, 3)
gripper_closed = actions[:, step, :, -1] < 0.5 # (bsz, num_grippers) # 1: open, 0: close
x_gripper_distance_mask = torch.logical_and(x_gripper_distance_mask, gripper_closed[:, :, None, None].repeat(1, 1, num_particles, 3))
gripper_quat_vel = actions[:, step, :, 10:13] # (bsz, num_grippers, 3)
gripper_angular_vel = torch.linalg.norm(gripper_quat_vel, dim=-1, keepdims=True) # (bsz, num_grippers, 1)
gripper_quat_axis = gripper_quat_vel / (gripper_angular_vel + 1e-10) # (bsz, num_grippers, 3)
grid_from_gripper_axis = x_from_gripper - \
(gripper_quat_axis[:, :, None] * x_from_gripper).sum(dim=-1, keepdims=True) * gripper_quat_axis[:, :, None] # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = torch.cross(gripper_quat_vel[:, :, None], grid_from_gripper_axis, dim=-1) + gripper_v_expand
for i in range(gripper_xyz.shape[1]):
x_gripper_distance_mask_single = x_gripper_distance_mask[:, i]
x[x_gripper_distance_mask_single] = x_in[x_gripper_distance_mask_single] + cfg.sim.dt * gripper_v_expand[:, i][x_gripper_distance_mask_single]
v[x_gripper_distance_mask_single] = gripper_v_expand[:, i][x_gripper_distance_mask_single]
if cfg.sim.n_history > 0:
if cfg.sim.gripper_points:
x_his_particles = torch.cat([x_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], x[:, :num_particles_orig, None].detach()], dim=2)
v_his_particles = torch.cat([v_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], v[:, :num_particles_orig, None].detach()], dim=2)
x_his = x_his_particles.reshape(batch_size, num_particles_orig, -1)
v_his = v_his_particles.reshape(batch_size, num_particles_orig, -1)
else:
x_his = torch.cat([x_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], x[:, :, None].detach()], dim=2)
v_his = torch.cat([v_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], v[:, :, None].detach()], dim=2)
x_his = x_his.reshape(batch_size, num_particles, -1)
v_his = v_his.reshape(batch_size, num_particles, -1)
if cfg.sim.gripper_points:
extra_save = {
'gripper_x': gripper_x[0, step],
'gripper_v': gripper_v[0, step],
'gripper_actions': actions[0, step],
}
x = x[:, :num_particles_orig]
v = v[:, :num_particles_orig]
enabled = enabled[:, :num_particles_orig]
else:
extra_save = {}
colliders_save = colliders.export()
colliders_save = {key: torch.from_numpy(colliders_save[key])[0].to(x.device).to(x.dtype) for key in colliders_save}
loss_x = nn.functional.mse_loss(x[enabled_mask > 0], gt_x[:, step][enabled_mask > 0])
loss_v = nn.functional.mse_loss(v[enabled_mask > 0], gt_v[:, step][enabled_mask > 0])
losses[step] = dict(loss_x=loss_x.item(), loss_v=loss_v.item())
ckpt = dict(x=x[0], v=v[0], **colliders_save, **extra_save)
if save and step % cfg.sim.skip_frame == 0:
torch.save(ckpt, episode_state_root / f'{int(step / cfg.sim.skip_frame):04d}.pt')
metrics = None
if save:
for loss_k in losses[0].keys():
plt.figure(figsize=(10, 5))
loss_list = [losses[step][loss_k] for step in losses]
plt.plot(loss_list)
plt.title(loss_k)
plt.grid()
plt.savefig(state_root / f'episode_{episode:04d}_{loss_k}.png', dpi=300)
# particle visualization
if self.use_pv:
do_train_pv(
cfg,
log_root,
iteration,
[f'episode_{episode:04d}'],
eval_dirname=f'eval',
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
)
# gaussian splatting visualization
if self.use_gs:
from .gs import do_gs
do_gs(
cfg,
log_root,
iteration,
[f'episode_{episode:04d}'],
eval_dirname=f'eval',
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
camera_id=1,
with_mask=True,
with_bg=True,
)
# particle visualization of ground truth
if self.use_pv:
_ = do_dataset_pv(
cfg,
log_root / str(cfg.train.dataset_name),
[f'episode_{episode:04d}'],
save_dir=log_root / f'{cfg.train.name}/eval/{cfg.train.dataset_name.split("/")[-1]}/{iteration:06d}/pv',
downsample_indices=downsample_indices,
)
metrics = do_metric(
cfg,
log_root,
iteration,
[f'episode_{episode:04d}'],
downsample_indices,
eval_dirname=f'eval',
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
camera_id=1,
use_gs=self.use_gs,
)
return metrics
def eval(self, eval_iteration: int, save: bool = True):
cfg = self.cfg
metrics_list = []
start_episode = cfg.train.eval_start_episode
end_episode = cfg.train.eval_end_episode if save else cfg.train.eval_start_episode + 2
for episode in range(start_episode, end_episode):
metrics = self.eval_episode(eval_iteration, episode, save=save)
metrics_list.append(metrics)
if not save:
return
metrics_list = np.array(metrics_list)[:, 0] # (n_episodes, n_frames, 10 or 3)
if self.use_gs:
metric_names = ['mse', 'chamfer', 'emd', 'jscore', 'fscore', 'jfscore', 'perception', 'psnr', 'ssim']
else:
metric_names = ['mse', 'chamfer', 'emd']
median_metric = np.median(metrics_list, axis=0)
step_75_metric = np.percentile(metrics_list, 75, axis=0)
step_25_metric = np.percentile(metrics_list, 25, axis=0)
mean_metric = np.mean(metrics_list, axis=0)
std_metric = np.std(metrics_list, axis=0)
for i, metric_name in enumerate(metric_names):
# plot error
x = np.arange(1, len(median_metric) + 1)
plt.figure(figsize=(8, 5))
plt.plot(x, median_metric[:, i])
plt.xlabel(f"prediction steps, dt={cfg.sim.dt}")
plt.ylabel(metric_name)
plt.grid()
ax = plt.gca()
x = np.arange(1, len(median_metric) + 1)
ax.fill_between(x, step_25_metric[:, i], step_75_metric[:, i], alpha=0.2)
save_dir = root / 'log' / cfg.train.name / 'eval' / cfg.train.dataset_name.split("/")[-1] / f'{eval_iteration:06d}' / 'metric'
plt.tight_layout()
plt.savefig(os.path.join(save_dir, f'{i:02d}-{metric_name}.png'), dpi=300)
plt.close()
# send to wandb
if not cfg.debug:
for i, metric_name in enumerate(metric_names):
self.logger.add_scalar(f'metric/{metric_name}-mean', mean_metric[:, i].mean(), step=self.total_step_count)
self.logger.add_scalar(f'metric/{metric_name}-std', std_metric[:, i].mean(), step=self.total_step_count)
img = np.array(Image.open(os.path.join(save_dir, f'{i:02d}-{metric_name}.png')).convert('RGB'))
self.logger.add_image(f'metric_curve/{metric_name}', img, step=self.total_step_count)
def test_cuda_mem(self):
self.init_train()
self.train(0, 10, save=False)
self.eval(10, save=False)
@hydra.main(version_base='1.2', config_path=str(root / 'cfg'), config_name='default')
def main(cfg: DictConfig):
trainer = Trainer(cfg)
trainer.load_train_dataset()
trainer.test_cuda_mem()
trainer.init_train()
for iteration in range(cfg.train.resume_iteration, cfg.train.num_iterations, cfg.train.iteration_eval_interval):
start_iteration = iteration
end_iteration = min(iteration + cfg.train.iteration_eval_interval, cfg.train.num_iterations)
trainer.train(start_iteration, end_iteration)
trainer.eval(end_iteration)
if __name__ == '__main__':
main()
|