pgnd / src /experiments /train /pv_dataset.py
kywind
update
f96995c
from pathlib import Path
import random
from tqdm import tqdm, trange
import hydra
from omegaconf import DictConfig, OmegaConf
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn
import math
import pyvista as pv
from dgl.geometry import farthest_point_sampler
from pgnd.utils import get_root, mkdir
from pgnd.ffmpeg import make_video
from train.pv_utils import Xvfb, get_camera_custom
def fps(x, n, random_start=False):
start_idx = random.randint(0, x.shape[0] - 1) if random_start else 0
fps_idx = farthest_point_sampler(x[None], n, start_idx=start_idx)[0]
fps_idx = fps_idx.to(x.device)
return fps_idx
@torch.no_grad()
def render(
cfg,
dataset_root,
episode_names,
iteration=None,
start_step=None,
end_step=None,
save_dir=None,
downsample_indices=None,
clean_bg=False,
):
render_type = 'pv'
exp_root: Path = dataset_root
state_root: Path = exp_root / 'state'
video_path_list = []
for episode_idx, episode in enumerate(episode_names):
plotter = pv.Plotter(lighting='three lights', off_screen=True, window_size=(cfg.render.width, cfg.render.height))
plotter.set_background('white')
plotter.camera_position = get_camera_custom(cfg.render.center, cfg.render.distance, cfg.render.azimuth, cfg.render.elevation)
plotter.enable_shadows()
# add bounding box
scale_x = cfg.sim.num_grids[0] / (cfg.sim.num_grids[0] - 2 * cfg.render.bound)
scale_y = cfg.sim.num_grids[1] / (cfg.sim.num_grids[1] - 2 * cfg.render.bound)
scale_z = cfg.sim.num_grids[2] / (cfg.sim.num_grids[2] - 2 * cfg.render.bound)
scale = np.array([scale_x, scale_y, scale_z])
scale_mean = np.power(np.prod(scale), 1 / 3)
bbox = pv.Box(bounds=[0, 1, 0, 1, 0, 1])
if not clean_bg:
plotter.add_mesh(bbox, style='wireframe', color='black')
# add axis
if not clean_bg:
for axis, color in enumerate(['r', 'g', 'b']):
mesh = pv.Arrow(start=[0, 0, 0], direction=np.eye(3)[axis], scale=0.2)
plotter.add_mesh(mesh, color=color, show_scalar_bar=False)
episode_state_root = state_root / episode
episode_image_root = save_dir / f'{episode}_gt'
mkdir(episode_image_root, overwrite=True, resume=True)
ckpt_paths = list(sorted(episode_state_root.glob('*.pt'), key=lambda x: int(x.stem)))
if start_step is not None and end_step is not None:
ckpt_paths = ckpt_paths[start_step:end_step]
skip_frame = cfg.train.dataset_skip_frame * cfg.train.dataset_load_skip_frame
ckpt_paths = ckpt_paths[skip_frame::skip_frame]
for i, path in enumerate(tqdm(ckpt_paths, desc=render_type)):
if i % cfg.render.skip_frame != 0:
continue
ckpt = torch.load(path, map_location='cpu')
p_x = ckpt['x'].cpu().detach().numpy()
if downsample_indices is not None:
p_x = p_x[downsample_indices[0]]
else:
downsample_indices = fps(torch.from_numpy(p_x), cfg.sim.n_particles, random_start=True)[None]
p_x = p_x[downsample_indices[0]]
x = (p_x - 0.5) * scale + 0.5
grippers = ckpt['grippers'].cpu().detach().numpy()
n_eef = grippers.shape[0]
radius = 0.5 * np.power((0.5 ** 3) / x.shape[0], 1 / 3) * scale_mean
x = np.clip(x, radius, 1 - radius)
polydata = pv.PolyData(x)
plotter.add_mesh(polydata, style='points', name='object', render_points_as_spheres=True, point_size=radius * cfg.render.radius_scale, color=list(cfg.render.reflectance))
for j in range(n_eef):
gripper = pv.Sphere(center=grippers[j, :3], radius=grippers[j, -2])
plotter.add_mesh(gripper, color='blue', name=f'gripper_{j}')
plotter.show(auto_close=False, screenshot=str(episode_image_root / f'{i // cfg.render.skip_frame:04d}.png'))
plotter.close()
if save_dir is not None:
make_video(episode_image_root, save_dir / f'{episode}_gt.mp4', '%04d.png', cfg.render.fps)
video_path_list.append(save_dir / f'{episode}_gt.mp4')
return video_path_list
@torch.no_grad()
def do_dataset_pv(*args, **kwargs):
with Xvfb():
ret = render(*args, **kwargs)
return ret