File size: 4,431 Bytes
f96995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from pathlib import Path
import random
from tqdm import tqdm, trange

import hydra
from omegaconf import DictConfig, OmegaConf
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn
import math
import pyvista as pv
from dgl.geometry import farthest_point_sampler

from pgnd.utils import get_root, mkdir
from pgnd.ffmpeg import make_video

from train.pv_utils import Xvfb, get_camera_custom


def fps(x, n, random_start=False):
    start_idx = random.randint(0, x.shape[0] - 1) if random_start else 0
    fps_idx = farthest_point_sampler(x[None], n, start_idx=start_idx)[0]
    fps_idx = fps_idx.to(x.device)
    return fps_idx


@torch.no_grad()
def render(
    cfg,
    dataset_root,
    episode_names,
    iteration=None,
    start_step=None,
    end_step=None,
    save_dir=None,
    downsample_indices=None,
    clean_bg=False,
):
    render_type = 'pv'

    exp_root: Path = dataset_root
    state_root: Path = exp_root / 'state'

    video_path_list = []
    for episode_idx, episode in enumerate(episode_names):

        plotter = pv.Plotter(lighting='three lights', off_screen=True, window_size=(cfg.render.width, cfg.render.height))
        plotter.set_background('white')
        plotter.camera_position = get_camera_custom(cfg.render.center, cfg.render.distance, cfg.render.azimuth, cfg.render.elevation)
        plotter.enable_shadows()

        # add bounding box
        scale_x = cfg.sim.num_grids[0] / (cfg.sim.num_grids[0] - 2 * cfg.render.bound)
        scale_y = cfg.sim.num_grids[1] / (cfg.sim.num_grids[1] - 2 * cfg.render.bound)
        scale_z = cfg.sim.num_grids[2] / (cfg.sim.num_grids[2] - 2 * cfg.render.bound)
        scale = np.array([scale_x, scale_y, scale_z])
        scale_mean = np.power(np.prod(scale), 1 / 3)
        bbox = pv.Box(bounds=[0, 1, 0, 1, 0, 1])
        if not clean_bg:
            plotter.add_mesh(bbox, style='wireframe', color='black')
        
        # add axis
        if not clean_bg:
            for axis, color in enumerate(['r', 'g', 'b']):
                mesh = pv.Arrow(start=[0, 0, 0], direction=np.eye(3)[axis], scale=0.2)
                plotter.add_mesh(mesh, color=color, show_scalar_bar=False)

        episode_state_root = state_root / episode

        episode_image_root = save_dir / f'{episode}_gt'
        mkdir(episode_image_root, overwrite=True, resume=True)

        ckpt_paths = list(sorted(episode_state_root.glob('*.pt'), key=lambda x: int(x.stem)))
        if start_step is not None and end_step is not None:
            ckpt_paths = ckpt_paths[start_step:end_step]
        skip_frame = cfg.train.dataset_skip_frame * cfg.train.dataset_load_skip_frame
        ckpt_paths = ckpt_paths[skip_frame::skip_frame]
        for i, path in enumerate(tqdm(ckpt_paths, desc=render_type)):

            if i % cfg.render.skip_frame != 0:
                continue

            ckpt = torch.load(path, map_location='cpu')
            p_x = ckpt['x'].cpu().detach().numpy()
            if downsample_indices is not None:
                p_x = p_x[downsample_indices[0]]
            else:
                downsample_indices = fps(torch.from_numpy(p_x), cfg.sim.n_particles, random_start=True)[None]
                p_x = p_x[downsample_indices[0]]

            x = (p_x - 0.5) * scale + 0.5

            grippers = ckpt['grippers'].cpu().detach().numpy()
            n_eef = grippers.shape[0]

            radius = 0.5 * np.power((0.5 ** 3) / x.shape[0], 1 / 3) * scale_mean
            x = np.clip(x, radius, 1 - radius)

            polydata = pv.PolyData(x)
            plotter.add_mesh(polydata, style='points', name='object', render_points_as_spheres=True, point_size=radius * cfg.render.radius_scale, color=list(cfg.render.reflectance))
            for j in range(n_eef):
                gripper = pv.Sphere(center=grippers[j, :3], radius=grippers[j, -2])
                plotter.add_mesh(gripper, color='blue', name=f'gripper_{j}')

            plotter.show(auto_close=False, screenshot=str(episode_image_root / f'{i // cfg.render.skip_frame:04d}.png'))

        plotter.close()
        if save_dir is not None:
            make_video(episode_image_root, save_dir / f'{episode}_gt.mp4', '%04d.png', cfg.render.fps)
            video_path_list.append(save_dir / f'{episode}_gt.mp4')

    return video_path_list


@torch.no_grad()
def do_dataset_pv(*args, **kwargs):
    with Xvfb():
        ret = render(*args, **kwargs)
    return ret