kywind
update
f96995c
from pathlib import Path
import random
from tqdm import tqdm, trange
import argparse
import yaml
import hydra
from omegaconf import DictConfig, OmegaConf
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn
import warp as wp
import glob
from torch.utils.data import DataLoader
import os
import matplotlib.pyplot as plt
import json
import sys
sys.path.append(str(Path(__file__).parent.parent.parent))
sys.path.append(str(Path(__file__).parent.parent))
from pgnd.sim import Friction, CacheDiffSimWithFrictionBatch, StaticsBatch, CollidersBatch
from pgnd.material import PGNDModel
from pgnd.data import RealTeleopBatchDataset, RealGripperDataset
from pgnd.utils import Logger, get_root, mkdir
from gs import do_gs
from pv_train import do_train_pv
from pv_dataset import do_dataset_pv
from metric_eval import do_metric
from train_eval import transform_gripper_points, dataloader_wrapper
root: Path = get_root(__file__)
def eval(
cfg: DictConfig,
ckpt_path: str,
episode: int,
dataset_pv: bool = True,
eval_base_name: str = 'eval-val',
use_pv: bool = True,
use_gs: bool = True,
):
# init
wp.init()
wp.ScopedTimer.enabled = False
wp.set_module_options({'fast_math': False})
gpus = [int(gpu) for gpu in cfg.gpus]
wp_devices = [wp.get_device(f'cuda:{gpu}') for gpu in gpus]
torch_devices = [torch.device(f'cuda:{gpu}') for gpu in gpus]
device_count = len(torch_devices)
assert device_count == 1
wp_device = wp_devices[0]
torch_device = torch_devices[0]
seed = cfg.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.autograd.set_detect_anomaly(True)
torch.backends.cudnn.benchmark = True
log_root: Path = root / 'log'
eval_name = f'{cfg.train.name}/{eval_base_name}/{cfg.train.dataset_name.split("/")[-1]}/{cfg.iteration:06d}'
exp_root: Path = log_root / eval_name
state_root: Path = exp_root / 'state'
mkdir(state_root, overwrite=cfg.overwrite, resume=cfg.resume)
episode_state_root = state_root / f'episode_{episode:04d}'
mkdir(episode_state_root, overwrite=cfg.overwrite, resume=cfg.resume)
OmegaConf.save(cfg, exp_root / 'hydra.yaml', resolve=True)
use_pv = cfg.train.use_pv
if not use_pv:
print('not using pv rendering...')
# decide whether to use gs rendering based on the existence of gs files
assert os.path.exists(log_root / str(cfg.train.source_dataset_name) / f'episode_{episode:04d}' / 'meta.txt')
meta = np.loadtxt(log_root / str(cfg.train.source_dataset_name) / f'episode_{episode:04d}' / 'meta.txt')
with open(log_root / str(cfg.train.source_dataset_name) / 'metadata.json') as f:
datadir_list = json.load(f)
datadir = datadir_list[episode]
source_data_dir = datadir['path']
source_episode_id = int(meta[0])
source_frame_start = int(meta[1]) + int(cfg.sim.n_history) * int(cfg.train.dataset_load_skip_frame) * int(cfg.train.dataset_skip_frame)
source_frame_end = int(meta[2])
if use_gs:
use_gs = os.path.exists((log_root.parent.parent / source_data_dir).parent / f'episode_{source_episode_id:04d}' / 'gs' / f'{source_frame_start:06d}.splat')
if cfg.train.dataset_name is None:
cfg.train.dataset_name = Path(cfg.train.name).parent / 'dataset'
assert cfg.train.source_dataset_name is not None
source_dataset_root = log_root / str(cfg.train.source_dataset_name)
assert os.path.exists(source_dataset_root)
dataset = RealTeleopBatchDataset(
cfg,
dataset_root=log_root / cfg.train.dataset_name / 'state',
source_data_root=source_dataset_root,
device=torch_device,
num_steps=cfg.sim.num_steps,
eval_episode_name=f'episode_{episode:04d}',
)
dataloader = dataloader_wrapper(
DataLoader(dataset, batch_size=1, shuffle=False, num_workers=cfg.train.num_workers, pin_memory=True),
'dataset'
)
if cfg.sim.gripper_points:
eval_gripper_dataset = RealGripperDataset(
cfg,
device=torch_device,
)
eval_gripper_dataloader = dataloader_wrapper(
DataLoader(eval_gripper_dataset, batch_size=1, shuffle=False, num_workers=cfg.train.num_workers, pin_memory=True),
'gripper_dataset'
)
# load ckpt
if ckpt_path is None:
if cfg.model.ckpt is not None:
ckpt_path = cfg.model.ckpt
else:
ckpt_path = log_root / cfg.train.name / 'ckpt' / f'{cfg.iteration:06d}.pt'
ckpt = torch.load(log_root / ckpt_path, map_location=torch_device)
material: nn.Module = PGNDModel(cfg)
material.to(torch_device)
material.load_state_dict(ckpt['material'])
material.requires_grad_(False)
material.eval()
if 'friction' in ckpt:
friction = ckpt['friction']['mu'].reshape(-1, 1)
else:
friction = torch.tensor(cfg.model.friction.value, device=torch_device).reshape(-1, 1)
init_state, actions, gt_states, downsample_indices = next(dataloader)
x, v, x_his, v_his, clip_bound, enabled, episode_vec = init_state
x = x.to(torch_device)
v = v.to(torch_device)
x_his = x_his.to(torch_device)
v_his = v_his.to(torch_device)
actions = actions.to(torch_device)
if cfg.sim.gripper_points:
gripper_points, _ = next(eval_gripper_dataloader)
gripper_points = gripper_points.to(torch_device)
gripper_x, gripper_v, gripper_mask = transform_gripper_points(cfg, gripper_points, actions) # (bsz, num_steps, num_grippers, 3)
gt_x, gt_v = gt_states
gt_x = gt_x.to(torch_device)
gt_v = gt_v.to(torch_device)
# gt_states: (bsz, num_steps_total)
batch_size = gt_x.shape[0]
num_steps_total = gt_x.shape[1]
num_particles = gt_x.shape[2]
assert batch_size == 1
if cfg.sim.gripper_points:
num_gripper_particles = gripper_x.shape[2]
num_particles_orig = num_particles
num_particles = num_particles + num_gripper_particles
cfg.sim.num_steps = num_steps_total
sim = CacheDiffSimWithFrictionBatch(cfg, num_steps_total, batch_size, wp_device, requires_grad=True)
statics = StaticsBatch()
statics.init(shape=(batch_size, num_particles), device=wp_device)
statics.update_clip_bound(clip_bound)
statics.update_enabled(enabled)
colliders = CollidersBatch()
if cfg.sim.gripper_points:
assert not cfg.sim.gripper_forcing
num_grippers = 0
else:
num_grippers = cfg.sim.num_grippers
colliders.init(shape=(batch_size, num_grippers), device=wp_device)
if num_grippers > 0:
assert len(actions.shape) > 2
colliders.initialize_grippers(actions[:, 0])
colliders_save = colliders.export()
colliders_save = {key: torch.from_numpy(colliders_save[key])[0].to(x.device).to(x.dtype) for key in colliders_save}
ckpt = dict(x=x[0], v=v[0], **colliders_save)
torch.save(ckpt, episode_state_root / f'{0:04d}.pt')
enabled = enabled.to(torch_device) # (bsz, num_particles)
enabled_mask = enabled.unsqueeze(-1).repeat(1, 1, 3) # (bsz, num_particles, 3)
losses = {}
with torch.no_grad():
for step in trange(num_steps_total):
if num_grippers > 0:
colliders.update_grippers(actions[:, step])
if cfg.sim.gripper_forcing:
x_in = x.clone()
else:
x_in = None
if cfg.sim.gripper_points:
x = torch.cat([x, gripper_x[:, step]], dim=1) # gripper_points: (bsz, num_steps, num_particles, 3)
v = torch.cat([v, gripper_v[:, step]], dim=1)
x_his = torch.cat([x_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=x_his.device, dtype=x_his.dtype)], dim=1)
v_his = torch.cat([v_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=v_his.device, dtype=v_his.dtype)], dim=1)
if enabled.shape[1] < num_particles:
enabled = torch.cat([enabled, gripper_mask[:, step]], dim=1)
statics.update_enabled(enabled.cpu())
pred = material(x, v, x_his, v_his, enabled)
if pred.isnan().any():
print('pred isnan', pred.min().item(), pred.max().item())
break
if pred.isinf().any():
print('pred isinf', pred.min().item(), pred.max().item())
break
x, v = sim(statics, colliders, step, x, v, friction, pred)
if cfg.sim.gripper_forcing:
assert not cfg.sim.gripper_points
gripper_xyz = actions[:, step, :, :3]
gripper_v = actions[:, step, :, 3:6]
x_from_gripper = x_in[:, None] - gripper_xyz[:, :, None] # (bsz, num_grippers, num_particles, 3)
x_gripper_distance = torch.norm(x_from_gripper, dim=-1) # (bsz, num_grippers, num_particles)
x_gripper_distance_mask = x_gripper_distance < cfg.model.gripper_radius
x_gripper_distance_mask = x_gripper_distance_mask.unsqueeze(-1).repeat(1, 1, 1, 3) # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = gripper_v[:, :, None].repeat(1, 1, num_particles, 1) # (bsz, num_grippers, num_particles, 3)
gripper_closed = actions[:, step, :, -1] < 0.5 # (bsz, num_grippers) # 1: open, 0: close
x_gripper_distance_mask = torch.logical_and(x_gripper_distance_mask, gripper_closed[:, :, None, None].repeat(1, 1, num_particles, 3))
gripper_quat_vel = actions[:, step, :, 10:13] # (bsz, num_grippers, 3)
gripper_angular_vel = torch.linalg.norm(gripper_quat_vel, dim=-1, keepdims=True) # (bsz, num_grippers, 1)
gripper_quat_axis = gripper_quat_vel / (gripper_angular_vel + 1e-10) # (bsz, num_grippers, 3)
grid_from_gripper_axis = x_from_gripper - \
(gripper_quat_axis[:, :, None] * x_from_gripper).sum(dim=-1, keepdims=True) * gripper_quat_axis[:, :, None] # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = torch.cross(gripper_quat_vel[:, :, None], grid_from_gripper_axis, dim=-1) + gripper_v_expand
for i in range(gripper_xyz.shape[1]):
x_gripper_distance_mask_single = x_gripper_distance_mask[:, i]
x[x_gripper_distance_mask_single] = x_in[x_gripper_distance_mask_single] + cfg.sim.dt * gripper_v_expand[:, i][x_gripper_distance_mask_single]
v[x_gripper_distance_mask_single] = gripper_v_expand[:, i][x_gripper_distance_mask_single]
if cfg.sim.n_history > 0:
if cfg.sim.gripper_points:
x_his_particles = torch.cat([x_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], x[:, :num_particles_orig, None].detach()], dim=2)
v_his_particles = torch.cat([v_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], v[:, :num_particles_orig, None].detach()], dim=2)
x_his = x_his_particles.reshape(batch_size, num_particles_orig, -1)
v_his = v_his_particles.reshape(batch_size, num_particles_orig, -1)
else:
x_his = torch.cat([x_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], x[:, :, None].detach()], dim=2)
v_his = torch.cat([v_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], v[:, :, None].detach()], dim=2)
x_his = x_his.reshape(batch_size, num_particles, -1)
v_his = v_his.reshape(batch_size, num_particles, -1)
if cfg.sim.gripper_points:
extra_save = {
'gripper_x': gripper_x[0, step],
'gripper_v': gripper_v[0, step],
'gripper_actions': actions[0, step],
}
x = x[:, :num_particles_orig]
v = v[:, :num_particles_orig]
enabled = enabled[:, :num_particles_orig]
else:
extra_save = {}
colliders_save = colliders.export()
colliders_save = {key: torch.from_numpy(colliders_save[key])[0].to(x.device).to(x.dtype) for key in colliders_save}
loss_x = nn.functional.mse_loss(x[enabled_mask > 0], gt_x[:, step][enabled_mask > 0])
loss_v = nn.functional.mse_loss(v[enabled_mask > 0], gt_v[:, step][enabled_mask > 0])
losses[step] = dict(loss_x=loss_x.item(), loss_v=loss_v.item())
ckpt = dict(x=x[0], v=v[0], **colliders_save, **extra_save)
if step % cfg.sim.skip_frame == 0:
torch.save(ckpt, episode_state_root / f'{int(step / cfg.sim.skip_frame):04d}.pt')
for loss_k in losses[0].keys():
plt.figure(figsize=(10, 5))
loss_list = [losses[step][loss_k] for step in losses]
plt.plot(loss_list)
plt.title(loss_k)
plt.grid()
plt.savefig(state_root / f'episode_{episode:04d}_{loss_k}.png', dpi=300)
## pv
if use_pv:
do_train_pv(
cfg,
log_root,
cfg.iteration,
[f'episode_{episode:04d}'],
eval_dirname=eval_base_name,
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
)
if use_gs:
do_gs(
cfg,
log_root,
cfg.iteration,
[f'episode_{episode:04d}'],
eval_dirname=eval_base_name,
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
camera_id=1,
with_mask=True,
with_bg=True,
)
if use_pv:
save_dir = log_root / f'{cfg.train.name}/{eval_base_name}/{cfg.train.dataset_name.split("/")[-1]}/{cfg.iteration:06d}/pv'
_ = do_dataset_pv(
cfg,
log_root / str(cfg.train.dataset_name),
[f'episode_{episode:04d}'],
save_dir=save_dir,
downsample_indices=downsample_indices,
)
metrics = do_metric(
cfg,
log_root,
cfg.iteration,
[f'episode_{episode:04d}'],
downsample_indices,
eval_dirname=eval_base_name,
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
camera_id=1,
use_gs=use_gs,
)
return metrics
@torch.no_grad()
def main(
cfg: DictConfig,
):
print(OmegaConf.to_yaml(cfg, resolve=True))
metrics_list = []
for episode in range(cfg.start_episode, cfg.end_episode):
if "eval_state_only" in cfg and cfg.eval_state_only:
use_pv = False
use_gs = False
eval_base_name = 'eval_state'
else:
use_pv = True
use_gs = True
eval_base_name = 'eval'
metrics = eval(cfg,
None,
episode,
dataset_pv=True,
eval_base_name=eval_base_name,
use_pv=use_pv,
use_gs=use_gs,
)
metrics_list.append(metrics)
metrics_list = np.array(metrics_list)[:, 0]
if metrics_list.shape[-1] == 10:
metric_names = ['mse', 'chamfer', 'emd', 'jscore', 'fscore', 'jfscore', 'perception', 'psnr', 'ssim', 'iou']
else:
assert metrics_list.shape[-1] == 3
metric_names = ['mse', 'chamfer', 'emd']
median_metric = np.median(metrics_list, axis=0)
step_75_metric = np.percentile(metrics_list, 75, axis=0)
step_25_metric = np.percentile(metrics_list, 25, axis=0)
for i, metric_name in enumerate(metric_names):
# plot error
x = np.arange(1, len(median_metric) + 1)
plt.figure(figsize=(10, 5))
plt.plot(x, median_metric[:, i])
plt.xlabel(f"prediction steps, dt={cfg.sim.dt}")
plt.ylabel(metric_name)
plt.grid()
ax = plt.gca()
x = np.arange(1, len(median_metric) + 1)
ax.fill_between(x, step_25_metric[:, i], step_75_metric[:, i], alpha=0.2)
save_dir = root / 'log' / cfg.train.name / eval_base_name / cfg.train.dataset_name.split("/")[-1] / f'{cfg.iteration:06d}' / 'metric'
plt.savefig(os.path.join(save_dir, f'{i:02d}-{metric_name}.png'))
plt.close()
mean_metric = np.mean(metrics_list, axis=0)
std_metric = np.std(metrics_list, axis=0)
n_steps = 30
mean_metric_step = mean_metric[n_steps]
std_metric_step = std_metric[n_steps]
if mean_metric.shape[-1] == 10:
mse, chamfer, emd, jscore, fscore, jfscore, perception, psnr, ssim, iou = mean_metric_step
mse_std, chamfer_std, emd_std, jscore_std, fscore_std, jfscore_std, perception_std, psnr_std, ssim_std, iou_std = std_metric_step
print(f'3D MSE: {mse:.4f} {mse_std:.4f}, 3D CD: {chamfer:.4f} {chamfer_std:.4f}, 3D EMD: {emd:.4f} {emd_std:.4f}', end=' ')
print(f'J-Score: {jscore:.4f} {jscore_std:.4f}, F-Score: {fscore:.4f} {fscore_std:.4f}, JF-Score: {jfscore:.4f} {jfscore_std:.4f}', end=' ')
print(f'perception: {perception:.4f} {perception_std:.4f}, PSNR: {psnr:.4f} {psnr_std:.4f}, SSIM: {ssim:.4f} {ssim_std:.4f}, IoU: {iou:.4f} {iou_std:.4f}')
else:
mse, chamfer, emd = mean_metric_step
mse_std, chamfer_std, emd_std = std_metric_step
print(f'3D MSE: {mse:.4f} {mse_std:.4f}, 3D CD: {chamfer:.4f} {chamfer_std:.4f}, 3D EMD: {emd:.4f} {emd_std:.4f}')
if __name__ == '__main__':
best_models = {
'cloth': ['cloth', 'train', 100000, [610, 650]],
'rope': ['rope', 'train', 100000, [651, 691]],
'paperbag': ['paperbag', 'train', 100000, [200, 220]],
'sloth': ['sloth', 'train', 100000, [113, 133]],
'box': ['box', 'train', 100000, [306, 323]],
'bread': ['bread', 'train', 100000, [143, 163]],
}
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('--task', type=str, required=True)
arg_parser.add_argument('--state_only', action='store_true')
args = arg_parser.parse_args()
with open(root / f'log/{best_models[args.task][0]}/{best_models[args.task][1]}/hydra.yaml', 'r') as f:
config = yaml.load(f, Loader=yaml.CLoader)
cfg = OmegaConf.create(config)
cfg.iteration = best_models[args.task][2]
cfg.start_episode = best_models[args.task][3][0]
cfg.end_episode = best_models[args.task][3][1]
cfg.sim.num_steps = 1000
cfg.sim.gripper_forcing = False
cfg.sim.uniform = True
cfg.sim.use_pv = True
cfg.eval_state_only = args.state_only
main(cfg)