File size: 18,735 Bytes
f96995c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
from pathlib import Path
import random
from tqdm import tqdm, trange
import argparse
import yaml
import hydra
from omegaconf import DictConfig, OmegaConf
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn
import warp as wp
import glob
from torch.utils.data import DataLoader
import os
import matplotlib.pyplot as plt
import json
import sys
sys.path.append(str(Path(__file__).parent.parent.parent))
sys.path.append(str(Path(__file__).parent.parent))
from pgnd.sim import Friction, CacheDiffSimWithFrictionBatch, StaticsBatch, CollidersBatch
from pgnd.material import PGNDModel
from pgnd.data import RealTeleopBatchDataset, RealGripperDataset
from pgnd.utils import Logger, get_root, mkdir
from gs import do_gs
from pv_train import do_train_pv
from pv_dataset import do_dataset_pv
from metric_eval import do_metric
from train_eval import transform_gripper_points, dataloader_wrapper
root: Path = get_root(__file__)
def eval(
cfg: DictConfig,
ckpt_path: str,
episode: int,
dataset_pv: bool = True,
eval_base_name: str = 'eval-val',
use_pv: bool = True,
use_gs: bool = True,
):
# init
wp.init()
wp.ScopedTimer.enabled = False
wp.set_module_options({'fast_math': False})
gpus = [int(gpu) for gpu in cfg.gpus]
wp_devices = [wp.get_device(f'cuda:{gpu}') for gpu in gpus]
torch_devices = [torch.device(f'cuda:{gpu}') for gpu in gpus]
device_count = len(torch_devices)
assert device_count == 1
wp_device = wp_devices[0]
torch_device = torch_devices[0]
seed = cfg.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.autograd.set_detect_anomaly(True)
torch.backends.cudnn.benchmark = True
log_root: Path = root / 'log'
eval_name = f'{cfg.train.name}/{eval_base_name}/{cfg.train.dataset_name.split("/")[-1]}/{cfg.iteration:06d}'
exp_root: Path = log_root / eval_name
state_root: Path = exp_root / 'state'
mkdir(state_root, overwrite=cfg.overwrite, resume=cfg.resume)
episode_state_root = state_root / f'episode_{episode:04d}'
mkdir(episode_state_root, overwrite=cfg.overwrite, resume=cfg.resume)
OmegaConf.save(cfg, exp_root / 'hydra.yaml', resolve=True)
use_pv = cfg.train.use_pv
if not use_pv:
print('not using pv rendering...')
# decide whether to use gs rendering based on the existence of gs files
assert os.path.exists(log_root / str(cfg.train.source_dataset_name) / f'episode_{episode:04d}' / 'meta.txt')
meta = np.loadtxt(log_root / str(cfg.train.source_dataset_name) / f'episode_{episode:04d}' / 'meta.txt')
with open(log_root / str(cfg.train.source_dataset_name) / 'metadata.json') as f:
datadir_list = json.load(f)
datadir = datadir_list[episode]
source_data_dir = datadir['path']
source_episode_id = int(meta[0])
source_frame_start = int(meta[1]) + int(cfg.sim.n_history) * int(cfg.train.dataset_load_skip_frame) * int(cfg.train.dataset_skip_frame)
source_frame_end = int(meta[2])
if use_gs:
use_gs = os.path.exists((log_root.parent.parent / source_data_dir).parent / f'episode_{source_episode_id:04d}' / 'gs' / f'{source_frame_start:06d}.splat')
if cfg.train.dataset_name is None:
cfg.train.dataset_name = Path(cfg.train.name).parent / 'dataset'
assert cfg.train.source_dataset_name is not None
source_dataset_root = log_root / str(cfg.train.source_dataset_name)
assert os.path.exists(source_dataset_root)
dataset = RealTeleopBatchDataset(
cfg,
dataset_root=log_root / cfg.train.dataset_name / 'state',
source_data_root=source_dataset_root,
device=torch_device,
num_steps=cfg.sim.num_steps,
eval_episode_name=f'episode_{episode:04d}',
)
dataloader = dataloader_wrapper(
DataLoader(dataset, batch_size=1, shuffle=False, num_workers=cfg.train.num_workers, pin_memory=True),
'dataset'
)
if cfg.sim.gripper_points:
eval_gripper_dataset = RealGripperDataset(
cfg,
device=torch_device,
)
eval_gripper_dataloader = dataloader_wrapper(
DataLoader(eval_gripper_dataset, batch_size=1, shuffle=False, num_workers=cfg.train.num_workers, pin_memory=True),
'gripper_dataset'
)
# load ckpt
if ckpt_path is None:
if cfg.model.ckpt is not None:
ckpt_path = cfg.model.ckpt
else:
ckpt_path = log_root / cfg.train.name / 'ckpt' / f'{cfg.iteration:06d}.pt'
ckpt = torch.load(log_root / ckpt_path, map_location=torch_device)
material: nn.Module = PGNDModel(cfg)
material.to(torch_device)
material.load_state_dict(ckpt['material'])
material.requires_grad_(False)
material.eval()
if 'friction' in ckpt:
friction = ckpt['friction']['mu'].reshape(-1, 1)
else:
friction = torch.tensor(cfg.model.friction.value, device=torch_device).reshape(-1, 1)
init_state, actions, gt_states, downsample_indices = next(dataloader)
x, v, x_his, v_his, clip_bound, enabled, episode_vec = init_state
x = x.to(torch_device)
v = v.to(torch_device)
x_his = x_his.to(torch_device)
v_his = v_his.to(torch_device)
actions = actions.to(torch_device)
if cfg.sim.gripper_points:
gripper_points, _ = next(eval_gripper_dataloader)
gripper_points = gripper_points.to(torch_device)
gripper_x, gripper_v, gripper_mask = transform_gripper_points(cfg, gripper_points, actions) # (bsz, num_steps, num_grippers, 3)
gt_x, gt_v = gt_states
gt_x = gt_x.to(torch_device)
gt_v = gt_v.to(torch_device)
# gt_states: (bsz, num_steps_total)
batch_size = gt_x.shape[0]
num_steps_total = gt_x.shape[1]
num_particles = gt_x.shape[2]
assert batch_size == 1
if cfg.sim.gripper_points:
num_gripper_particles = gripper_x.shape[2]
num_particles_orig = num_particles
num_particles = num_particles + num_gripper_particles
cfg.sim.num_steps = num_steps_total
sim = CacheDiffSimWithFrictionBatch(cfg, num_steps_total, batch_size, wp_device, requires_grad=True)
statics = StaticsBatch()
statics.init(shape=(batch_size, num_particles), device=wp_device)
statics.update_clip_bound(clip_bound)
statics.update_enabled(enabled)
colliders = CollidersBatch()
if cfg.sim.gripper_points:
assert not cfg.sim.gripper_forcing
num_grippers = 0
else:
num_grippers = cfg.sim.num_grippers
colliders.init(shape=(batch_size, num_grippers), device=wp_device)
if num_grippers > 0:
assert len(actions.shape) > 2
colliders.initialize_grippers(actions[:, 0])
colliders_save = colliders.export()
colliders_save = {key: torch.from_numpy(colliders_save[key])[0].to(x.device).to(x.dtype) for key in colliders_save}
ckpt = dict(x=x[0], v=v[0], **colliders_save)
torch.save(ckpt, episode_state_root / f'{0:04d}.pt')
enabled = enabled.to(torch_device) # (bsz, num_particles)
enabled_mask = enabled.unsqueeze(-1).repeat(1, 1, 3) # (bsz, num_particles, 3)
losses = {}
with torch.no_grad():
for step in trange(num_steps_total):
if num_grippers > 0:
colliders.update_grippers(actions[:, step])
if cfg.sim.gripper_forcing:
x_in = x.clone()
else:
x_in = None
if cfg.sim.gripper_points:
x = torch.cat([x, gripper_x[:, step]], dim=1) # gripper_points: (bsz, num_steps, num_particles, 3)
v = torch.cat([v, gripper_v[:, step]], dim=1)
x_his = torch.cat([x_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=x_his.device, dtype=x_his.dtype)], dim=1)
v_his = torch.cat([v_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=v_his.device, dtype=v_his.dtype)], dim=1)
if enabled.shape[1] < num_particles:
enabled = torch.cat([enabled, gripper_mask[:, step]], dim=1)
statics.update_enabled(enabled.cpu())
pred = material(x, v, x_his, v_his, enabled)
if pred.isnan().any():
print('pred isnan', pred.min().item(), pred.max().item())
break
if pred.isinf().any():
print('pred isinf', pred.min().item(), pred.max().item())
break
x, v = sim(statics, colliders, step, x, v, friction, pred)
if cfg.sim.gripper_forcing:
assert not cfg.sim.gripper_points
gripper_xyz = actions[:, step, :, :3]
gripper_v = actions[:, step, :, 3:6]
x_from_gripper = x_in[:, None] - gripper_xyz[:, :, None] # (bsz, num_grippers, num_particles, 3)
x_gripper_distance = torch.norm(x_from_gripper, dim=-1) # (bsz, num_grippers, num_particles)
x_gripper_distance_mask = x_gripper_distance < cfg.model.gripper_radius
x_gripper_distance_mask = x_gripper_distance_mask.unsqueeze(-1).repeat(1, 1, 1, 3) # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = gripper_v[:, :, None].repeat(1, 1, num_particles, 1) # (bsz, num_grippers, num_particles, 3)
gripper_closed = actions[:, step, :, -1] < 0.5 # (bsz, num_grippers) # 1: open, 0: close
x_gripper_distance_mask = torch.logical_and(x_gripper_distance_mask, gripper_closed[:, :, None, None].repeat(1, 1, num_particles, 3))
gripper_quat_vel = actions[:, step, :, 10:13] # (bsz, num_grippers, 3)
gripper_angular_vel = torch.linalg.norm(gripper_quat_vel, dim=-1, keepdims=True) # (bsz, num_grippers, 1)
gripper_quat_axis = gripper_quat_vel / (gripper_angular_vel + 1e-10) # (bsz, num_grippers, 3)
grid_from_gripper_axis = x_from_gripper - \
(gripper_quat_axis[:, :, None] * x_from_gripper).sum(dim=-1, keepdims=True) * gripper_quat_axis[:, :, None] # (bsz, num_grippers, num_particles, 3)
gripper_v_expand = torch.cross(gripper_quat_vel[:, :, None], grid_from_gripper_axis, dim=-1) + gripper_v_expand
for i in range(gripper_xyz.shape[1]):
x_gripper_distance_mask_single = x_gripper_distance_mask[:, i]
x[x_gripper_distance_mask_single] = x_in[x_gripper_distance_mask_single] + cfg.sim.dt * gripper_v_expand[:, i][x_gripper_distance_mask_single]
v[x_gripper_distance_mask_single] = gripper_v_expand[:, i][x_gripper_distance_mask_single]
if cfg.sim.n_history > 0:
if cfg.sim.gripper_points:
x_his_particles = torch.cat([x_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], x[:, :num_particles_orig, None].detach()], dim=2)
v_his_particles = torch.cat([v_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], v[:, :num_particles_orig, None].detach()], dim=2)
x_his = x_his_particles.reshape(batch_size, num_particles_orig, -1)
v_his = v_his_particles.reshape(batch_size, num_particles_orig, -1)
else:
x_his = torch.cat([x_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], x[:, :, None].detach()], dim=2)
v_his = torch.cat([v_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], v[:, :, None].detach()], dim=2)
x_his = x_his.reshape(batch_size, num_particles, -1)
v_his = v_his.reshape(batch_size, num_particles, -1)
if cfg.sim.gripper_points:
extra_save = {
'gripper_x': gripper_x[0, step],
'gripper_v': gripper_v[0, step],
'gripper_actions': actions[0, step],
}
x = x[:, :num_particles_orig]
v = v[:, :num_particles_orig]
enabled = enabled[:, :num_particles_orig]
else:
extra_save = {}
colliders_save = colliders.export()
colliders_save = {key: torch.from_numpy(colliders_save[key])[0].to(x.device).to(x.dtype) for key in colliders_save}
loss_x = nn.functional.mse_loss(x[enabled_mask > 0], gt_x[:, step][enabled_mask > 0])
loss_v = nn.functional.mse_loss(v[enabled_mask > 0], gt_v[:, step][enabled_mask > 0])
losses[step] = dict(loss_x=loss_x.item(), loss_v=loss_v.item())
ckpt = dict(x=x[0], v=v[0], **colliders_save, **extra_save)
if step % cfg.sim.skip_frame == 0:
torch.save(ckpt, episode_state_root / f'{int(step / cfg.sim.skip_frame):04d}.pt')
for loss_k in losses[0].keys():
plt.figure(figsize=(10, 5))
loss_list = [losses[step][loss_k] for step in losses]
plt.plot(loss_list)
plt.title(loss_k)
plt.grid()
plt.savefig(state_root / f'episode_{episode:04d}_{loss_k}.png', dpi=300)
## pv
if use_pv:
do_train_pv(
cfg,
log_root,
cfg.iteration,
[f'episode_{episode:04d}'],
eval_dirname=eval_base_name,
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
)
if use_gs:
do_gs(
cfg,
log_root,
cfg.iteration,
[f'episode_{episode:04d}'],
eval_dirname=eval_base_name,
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
camera_id=1,
with_mask=True,
with_bg=True,
)
if use_pv:
save_dir = log_root / f'{cfg.train.name}/{eval_base_name}/{cfg.train.dataset_name.split("/")[-1]}/{cfg.iteration:06d}/pv'
_ = do_dataset_pv(
cfg,
log_root / str(cfg.train.dataset_name),
[f'episode_{episode:04d}'],
save_dir=save_dir,
downsample_indices=downsample_indices,
)
metrics = do_metric(
cfg,
log_root,
cfg.iteration,
[f'episode_{episode:04d}'],
downsample_indices,
eval_dirname=eval_base_name,
dataset_name=cfg.train.dataset_name.split("/")[-1],
eval_postfix='',
camera_id=1,
use_gs=use_gs,
)
return metrics
@torch.no_grad()
def main(
cfg: DictConfig,
):
print(OmegaConf.to_yaml(cfg, resolve=True))
metrics_list = []
for episode in range(cfg.start_episode, cfg.end_episode):
if "eval_state_only" in cfg and cfg.eval_state_only:
use_pv = False
use_gs = False
eval_base_name = 'eval_state'
else:
use_pv = True
use_gs = True
eval_base_name = 'eval'
metrics = eval(cfg,
None,
episode,
dataset_pv=True,
eval_base_name=eval_base_name,
use_pv=use_pv,
use_gs=use_gs,
)
metrics_list.append(metrics)
metrics_list = np.array(metrics_list)[:, 0]
if metrics_list.shape[-1] == 10:
metric_names = ['mse', 'chamfer', 'emd', 'jscore', 'fscore', 'jfscore', 'perception', 'psnr', 'ssim', 'iou']
else:
assert metrics_list.shape[-1] == 3
metric_names = ['mse', 'chamfer', 'emd']
median_metric = np.median(metrics_list, axis=0)
step_75_metric = np.percentile(metrics_list, 75, axis=0)
step_25_metric = np.percentile(metrics_list, 25, axis=0)
for i, metric_name in enumerate(metric_names):
# plot error
x = np.arange(1, len(median_metric) + 1)
plt.figure(figsize=(10, 5))
plt.plot(x, median_metric[:, i])
plt.xlabel(f"prediction steps, dt={cfg.sim.dt}")
plt.ylabel(metric_name)
plt.grid()
ax = plt.gca()
x = np.arange(1, len(median_metric) + 1)
ax.fill_between(x, step_25_metric[:, i], step_75_metric[:, i], alpha=0.2)
save_dir = root / 'log' / cfg.train.name / eval_base_name / cfg.train.dataset_name.split("/")[-1] / f'{cfg.iteration:06d}' / 'metric'
plt.savefig(os.path.join(save_dir, f'{i:02d}-{metric_name}.png'))
plt.close()
mean_metric = np.mean(metrics_list, axis=0)
std_metric = np.std(metrics_list, axis=0)
n_steps = 30
mean_metric_step = mean_metric[n_steps]
std_metric_step = std_metric[n_steps]
if mean_metric.shape[-1] == 10:
mse, chamfer, emd, jscore, fscore, jfscore, perception, psnr, ssim, iou = mean_metric_step
mse_std, chamfer_std, emd_std, jscore_std, fscore_std, jfscore_std, perception_std, psnr_std, ssim_std, iou_std = std_metric_step
print(f'3D MSE: {mse:.4f} {mse_std:.4f}, 3D CD: {chamfer:.4f} {chamfer_std:.4f}, 3D EMD: {emd:.4f} {emd_std:.4f}', end=' ')
print(f'J-Score: {jscore:.4f} {jscore_std:.4f}, F-Score: {fscore:.4f} {fscore_std:.4f}, JF-Score: {jfscore:.4f} {jfscore_std:.4f}', end=' ')
print(f'perception: {perception:.4f} {perception_std:.4f}, PSNR: {psnr:.4f} {psnr_std:.4f}, SSIM: {ssim:.4f} {ssim_std:.4f}, IoU: {iou:.4f} {iou_std:.4f}')
else:
mse, chamfer, emd = mean_metric_step
mse_std, chamfer_std, emd_std = std_metric_step
print(f'3D MSE: {mse:.4f} {mse_std:.4f}, 3D CD: {chamfer:.4f} {chamfer_std:.4f}, 3D EMD: {emd:.4f} {emd_std:.4f}')
if __name__ == '__main__':
best_models = {
'cloth': ['cloth', 'train', 100000, [610, 650]],
'rope': ['rope', 'train', 100000, [651, 691]],
'paperbag': ['paperbag', 'train', 100000, [200, 220]],
'sloth': ['sloth', 'train', 100000, [113, 133]],
'box': ['box', 'train', 100000, [306, 323]],
'bread': ['bread', 'train', 100000, [143, 163]],
}
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('--task', type=str, required=True)
arg_parser.add_argument('--state_only', action='store_true')
args = arg_parser.parse_args()
with open(root / f'log/{best_models[args.task][0]}/{best_models[args.task][1]}/hydra.yaml', 'r') as f:
config = yaml.load(f, Loader=yaml.CLoader)
cfg = OmegaConf.create(config)
cfg.iteration = best_models[args.task][2]
cfg.start_episode = best_models[args.task][3][0]
cfg.end_episode = best_models[args.task][3][1]
cfg.sim.num_steps = 1000
cfg.sim.gripper_forcing = False
cfg.sim.uniform = True
cfg.sim.use_pv = True
cfg.eval_state_only = args.state_only
main(cfg)
|