File size: 18,735 Bytes
f96995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
from pathlib import Path
import random
from tqdm import tqdm, trange

import argparse
import yaml
import hydra
from omegaconf import DictConfig, OmegaConf
import numpy as np
import torch
import torch.nn as nn
import torch.backends.cudnn
import warp as wp
import glob
from torch.utils.data import DataLoader
import os
import matplotlib.pyplot as plt
import json
import sys
sys.path.append(str(Path(__file__).parent.parent.parent))
sys.path.append(str(Path(__file__).parent.parent))

from pgnd.sim import Friction, CacheDiffSimWithFrictionBatch, StaticsBatch, CollidersBatch
from pgnd.material import PGNDModel
from pgnd.data import RealTeleopBatchDataset, RealGripperDataset
from pgnd.utils import Logger, get_root, mkdir

from gs import do_gs
from pv_train import do_train_pv
from pv_dataset import do_dataset_pv
from metric_eval import do_metric
from train_eval import transform_gripper_points, dataloader_wrapper

root: Path = get_root(__file__)


def eval(
    cfg: DictConfig,
    ckpt_path: str,
    episode: int,
    dataset_pv: bool = True,
    eval_base_name: str = 'eval-val',
    use_pv: bool = True,
    use_gs: bool = True,
):

    # init
    wp.init()
    wp.ScopedTimer.enabled = False
    wp.set_module_options({'fast_math': False})

    gpus = [int(gpu) for gpu in cfg.gpus]
    wp_devices = [wp.get_device(f'cuda:{gpu}') for gpu in gpus]
    torch_devices = [torch.device(f'cuda:{gpu}') for gpu in gpus]
    device_count = len(torch_devices)
    
    assert device_count == 1
    wp_device = wp_devices[0]
    torch_device = torch_devices[0]

    seed = cfg.seed
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

    torch.autograd.set_detect_anomaly(True)

    torch.backends.cudnn.benchmark = True

    log_root: Path = root / 'log'
    eval_name = f'{cfg.train.name}/{eval_base_name}/{cfg.train.dataset_name.split("/")[-1]}/{cfg.iteration:06d}'
    exp_root: Path = log_root / eval_name
    state_root: Path = exp_root / 'state'
    mkdir(state_root, overwrite=cfg.overwrite, resume=cfg.resume)
    episode_state_root = state_root / f'episode_{episode:04d}'
    mkdir(episode_state_root, overwrite=cfg.overwrite, resume=cfg.resume)
    OmegaConf.save(cfg, exp_root / 'hydra.yaml', resolve=True)

    use_pv = cfg.train.use_pv
    if not use_pv:
        print('not using pv rendering...')

    # decide whether to use gs rendering based on the existence of gs files
    assert os.path.exists(log_root / str(cfg.train.source_dataset_name) / f'episode_{episode:04d}' / 'meta.txt')
    meta = np.loadtxt(log_root / str(cfg.train.source_dataset_name) / f'episode_{episode:04d}' / 'meta.txt')
    with open(log_root / str(cfg.train.source_dataset_name) / 'metadata.json') as f:
        datadir_list = json.load(f)
    datadir = datadir_list[episode]
    source_data_dir = datadir['path']
    source_episode_id = int(meta[0])
    source_frame_start = int(meta[1]) + int(cfg.sim.n_history) * int(cfg.train.dataset_load_skip_frame) * int(cfg.train.dataset_skip_frame)
    source_frame_end = int(meta[2])
    if use_gs:
        use_gs = os.path.exists((log_root.parent.parent / source_data_dir).parent / f'episode_{source_episode_id:04d}' / 'gs' / f'{source_frame_start:06d}.splat')

    if cfg.train.dataset_name is None:
        cfg.train.dataset_name = Path(cfg.train.name).parent / 'dataset'
    assert cfg.train.source_dataset_name is not None

    source_dataset_root = log_root / str(cfg.train.source_dataset_name)
    assert os.path.exists(source_dataset_root)

    dataset = RealTeleopBatchDataset(
        cfg, 
        dataset_root=log_root / cfg.train.dataset_name / 'state',
        source_data_root=source_dataset_root,
        device=torch_device,
        num_steps=cfg.sim.num_steps,
        eval_episode_name=f'episode_{episode:04d}',
    )
    dataloader = dataloader_wrapper(
        DataLoader(dataset, batch_size=1, shuffle=False, num_workers=cfg.train.num_workers, pin_memory=True),
        'dataset'
    )
    if cfg.sim.gripper_points:
        eval_gripper_dataset = RealGripperDataset(
            cfg,
            device=torch_device,
        )
        eval_gripper_dataloader = dataloader_wrapper(
            DataLoader(eval_gripper_dataset, batch_size=1, shuffle=False, num_workers=cfg.train.num_workers, pin_memory=True),
            'gripper_dataset'
        )

    # load ckpt
    if ckpt_path is None:
        if cfg.model.ckpt is not None:
            ckpt_path = cfg.model.ckpt
        else:
            ckpt_path = log_root / cfg.train.name / 'ckpt' / f'{cfg.iteration:06d}.pt'
    ckpt = torch.load(log_root / ckpt_path, map_location=torch_device)
    
    material: nn.Module = PGNDModel(cfg)
    material.to(torch_device)
    material.load_state_dict(ckpt['material'])
    material.requires_grad_(False)
    material.eval()

    if 'friction' in ckpt:
        friction = ckpt['friction']['mu'].reshape(-1, 1)
    else:
        friction = torch.tensor(cfg.model.friction.value, device=torch_device).reshape(-1, 1)

    init_state, actions, gt_states, downsample_indices = next(dataloader)

    x, v, x_his, v_his, clip_bound, enabled, episode_vec = init_state
    x = x.to(torch_device)
    v = v.to(torch_device)
    x_his = x_his.to(torch_device)
    v_his = v_his.to(torch_device)

    actions = actions.to(torch_device)

    if cfg.sim.gripper_points:
        gripper_points, _ = next(eval_gripper_dataloader)
        gripper_points = gripper_points.to(torch_device)
        gripper_x, gripper_v, gripper_mask = transform_gripper_points(cfg, gripper_points, actions)  # (bsz, num_steps, num_grippers, 3)

    gt_x, gt_v = gt_states
    gt_x = gt_x.to(torch_device)
    gt_v = gt_v.to(torch_device)

    # gt_states: (bsz, num_steps_total)
    batch_size = gt_x.shape[0]
    num_steps_total = gt_x.shape[1]
    num_particles = gt_x.shape[2]
    assert batch_size == 1

    if cfg.sim.gripper_points:
        num_gripper_particles = gripper_x.shape[2]
        num_particles_orig = num_particles
        num_particles = num_particles + num_gripper_particles

    cfg.sim.num_steps = num_steps_total
    sim = CacheDiffSimWithFrictionBatch(cfg, num_steps_total, batch_size, wp_device, requires_grad=True)

    statics = StaticsBatch()
    statics.init(shape=(batch_size, num_particles), device=wp_device)
    statics.update_clip_bound(clip_bound)
    statics.update_enabled(enabled)
    colliders = CollidersBatch()

    if cfg.sim.gripper_points:
        assert not cfg.sim.gripper_forcing
        num_grippers = 0
    else:
        num_grippers = cfg.sim.num_grippers

    colliders.init(shape=(batch_size, num_grippers), device=wp_device)
    if num_grippers > 0:
        assert len(actions.shape) > 2
        colliders.initialize_grippers(actions[:, 0])

    colliders_save = colliders.export()
    colliders_save = {key: torch.from_numpy(colliders_save[key])[0].to(x.device).to(x.dtype) for key in colliders_save}
    ckpt = dict(x=x[0], v=v[0], **colliders_save)

    torch.save(ckpt, episode_state_root / f'{0:04d}.pt')

    enabled = enabled.to(torch_device)  # (bsz, num_particles)
    enabled_mask = enabled.unsqueeze(-1).repeat(1, 1, 3)  # (bsz, num_particles, 3)

    losses = {}
    with torch.no_grad():
        for step in trange(num_steps_total):
            if num_grippers > 0:
                colliders.update_grippers(actions[:, step])
            if cfg.sim.gripper_forcing:
                x_in = x.clone()
            else:
                x_in = None

            if cfg.sim.gripper_points:
                x = torch.cat([x, gripper_x[:, step]], dim=1)  # gripper_points: (bsz, num_steps, num_particles, 3)
                v = torch.cat([v, gripper_v[:, step]], dim=1)
                x_his = torch.cat([x_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=x_his.device, dtype=x_his.dtype)], dim=1)
                v_his = torch.cat([v_his, torch.zeros((gripper_x.shape[0], gripper_x.shape[2], cfg.sim.n_history * 3), device=v_his.device, dtype=v_his.dtype)], dim=1)
                if enabled.shape[1] < num_particles:
                    enabled = torch.cat([enabled, gripper_mask[:, step]], dim=1)
                statics.update_enabled(enabled.cpu())

            pred = material(x, v, x_his, v_his, enabled)

            if pred.isnan().any():
                print('pred isnan', pred.min().item(), pred.max().item())
                break
            if pred.isinf().any():
                print('pred isinf', pred.min().item(), pred.max().item())
                break

            x, v = sim(statics, colliders, step, x, v, friction, pred)

            if cfg.sim.gripper_forcing:
                assert not cfg.sim.gripper_points
                gripper_xyz = actions[:, step, :, :3]
                gripper_v = actions[:, step, :, 3:6]
                x_from_gripper = x_in[:, None] - gripper_xyz[:, :, None]  # (bsz, num_grippers, num_particles, 3)
                x_gripper_distance = torch.norm(x_from_gripper, dim=-1)  # (bsz, num_grippers, num_particles)
                x_gripper_distance_mask = x_gripper_distance < cfg.model.gripper_radius
                x_gripper_distance_mask = x_gripper_distance_mask.unsqueeze(-1).repeat(1, 1, 1, 3)  # (bsz, num_grippers, num_particles, 3)
                gripper_v_expand = gripper_v[:, :, None].repeat(1, 1, num_particles, 1)  # (bsz, num_grippers, num_particles, 3)

                gripper_closed = actions[:, step, :, -1] < 0.5  # (bsz, num_grippers)  # 1: open, 0: close
                x_gripper_distance_mask = torch.logical_and(x_gripper_distance_mask, gripper_closed[:, :, None, None].repeat(1, 1, num_particles, 3))

                gripper_quat_vel = actions[:, step, :, 10:13]  # (bsz, num_grippers, 3)
                gripper_angular_vel = torch.linalg.norm(gripper_quat_vel, dim=-1, keepdims=True)  # (bsz, num_grippers, 1)
                gripper_quat_axis = gripper_quat_vel / (gripper_angular_vel + 1e-10)  # (bsz, num_grippers, 3)

                grid_from_gripper_axis = x_from_gripper - \
                    (gripper_quat_axis[:, :, None] * x_from_gripper).sum(dim=-1, keepdims=True) * gripper_quat_axis[:, :, None]  # (bsz, num_grippers, num_particles, 3)
                gripper_v_expand = torch.cross(gripper_quat_vel[:, :, None], grid_from_gripper_axis, dim=-1) + gripper_v_expand

                for i in range(gripper_xyz.shape[1]):
                    x_gripper_distance_mask_single = x_gripper_distance_mask[:, i]
                    x[x_gripper_distance_mask_single] = x_in[x_gripper_distance_mask_single] + cfg.sim.dt * gripper_v_expand[:, i][x_gripper_distance_mask_single]
                    v[x_gripper_distance_mask_single] = gripper_v_expand[:, i][x_gripper_distance_mask_single]
            
            if cfg.sim.n_history > 0:
                if cfg.sim.gripper_points:
                    x_his_particles = torch.cat([x_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], x[:, :num_particles_orig, None].detach()], dim=2)
                    v_his_particles = torch.cat([v_his[:, :num_particles_orig].reshape(batch_size, num_particles_orig, -1, 3)[:, :, 1:], v[:, :num_particles_orig, None].detach()], dim=2)
                    x_his = x_his_particles.reshape(batch_size, num_particles_orig, -1)
                    v_his = v_his_particles.reshape(batch_size, num_particles_orig, -1)
                else:
                    x_his = torch.cat([x_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], x[:, :, None].detach()], dim=2)
                    v_his = torch.cat([v_his.reshape(batch_size, num_particles, -1, 3)[:, :, 1:], v[:, :, None].detach()], dim=2)
                    x_his = x_his.reshape(batch_size, num_particles, -1)
                    v_his = v_his.reshape(batch_size, num_particles, -1)

            if cfg.sim.gripper_points:
                extra_save = {
                    'gripper_x': gripper_x[0, step],
                    'gripper_v': gripper_v[0, step],
                    'gripper_actions': actions[0, step],
                }
                x = x[:, :num_particles_orig]
                v = v[:, :num_particles_orig]
                enabled = enabled[:, :num_particles_orig]
            else:
                extra_save = {}

            colliders_save = colliders.export()
            colliders_save = {key: torch.from_numpy(colliders_save[key])[0].to(x.device).to(x.dtype) for key in colliders_save}
            
            loss_x = nn.functional.mse_loss(x[enabled_mask > 0], gt_x[:, step][enabled_mask > 0])
            loss_v = nn.functional.mse_loss(v[enabled_mask > 0], gt_v[:, step][enabled_mask > 0])
            losses[step] = dict(loss_x=loss_x.item(), loss_v=loss_v.item())
            
            ckpt = dict(x=x[0], v=v[0], **colliders_save, **extra_save)

            if step % cfg.sim.skip_frame == 0:
                torch.save(ckpt, episode_state_root / f'{int(step / cfg.sim.skip_frame):04d}.pt')

    for loss_k in losses[0].keys():
        plt.figure(figsize=(10, 5))
        loss_list = [losses[step][loss_k] for step in losses]
        plt.plot(loss_list)
        plt.title(loss_k)
        plt.grid()
        plt.savefig(state_root / f'episode_{episode:04d}_{loss_k}.png', dpi=300)

    ## pv
    if use_pv:
        do_train_pv(
            cfg,
            log_root,
            cfg.iteration,
            [f'episode_{episode:04d}'],
            eval_dirname=eval_base_name,
            dataset_name=cfg.train.dataset_name.split("/")[-1],
            eval_postfix='',
        )

    if use_gs:
        do_gs(
            cfg,
            log_root,
            cfg.iteration,
            [f'episode_{episode:04d}'],
            eval_dirname=eval_base_name,
            dataset_name=cfg.train.dataset_name.split("/")[-1],
            eval_postfix='',
            camera_id=1,
            with_mask=True,
            with_bg=True,
        )

    if use_pv:
        save_dir = log_root / f'{cfg.train.name}/{eval_base_name}/{cfg.train.dataset_name.split("/")[-1]}/{cfg.iteration:06d}/pv'
        _ = do_dataset_pv(
            cfg,
            log_root / str(cfg.train.dataset_name),
            [f'episode_{episode:04d}'],
            save_dir=save_dir,
            downsample_indices=downsample_indices,
        )
    
    metrics = do_metric(
        cfg,
        log_root,
        cfg.iteration,
        [f'episode_{episode:04d}'],
        downsample_indices,
        eval_dirname=eval_base_name,
        dataset_name=cfg.train.dataset_name.split("/")[-1],
        eval_postfix='',
        camera_id=1,
        use_gs=use_gs,
    )
    return metrics


@torch.no_grad()
def main(
    cfg: DictConfig, 
):

    print(OmegaConf.to_yaml(cfg, resolve=True))

    metrics_list = []
    for episode in range(cfg.start_episode, cfg.end_episode):
        if "eval_state_only" in cfg and cfg.eval_state_only:
            use_pv = False
            use_gs = False
            eval_base_name = 'eval_state'
        else:
            use_pv = True
            use_gs = True
            eval_base_name = 'eval'
        metrics = eval(cfg,
            None,
            episode,
            dataset_pv=True,
            eval_base_name=eval_base_name,
            use_pv=use_pv, 
            use_gs=use_gs,
        )
        metrics_list.append(metrics)

    metrics_list = np.array(metrics_list)[:, 0]

    if metrics_list.shape[-1] == 10:
        metric_names = ['mse', 'chamfer', 'emd', 'jscore', 'fscore', 'jfscore', 'perception', 'psnr', 'ssim', 'iou']
    else:
        assert metrics_list.shape[-1] == 3
        metric_names = ['mse', 'chamfer', 'emd']

    median_metric = np.median(metrics_list, axis=0)
    step_75_metric = np.percentile(metrics_list, 75, axis=0)
    step_25_metric = np.percentile(metrics_list, 25, axis=0)

    for i, metric_name in enumerate(metric_names):
        # plot error
        x = np.arange(1, len(median_metric) + 1)
        plt.figure(figsize=(10, 5))
        plt.plot(x, median_metric[:, i])
        plt.xlabel(f"prediction steps, dt={cfg.sim.dt}")
        plt.ylabel(metric_name)
        plt.grid()

        ax = plt.gca()
        x = np.arange(1, len(median_metric) + 1)
        ax.fill_between(x, step_25_metric[:, i], step_75_metric[:, i], alpha=0.2)

        save_dir = root / 'log' / cfg.train.name / eval_base_name / cfg.train.dataset_name.split("/")[-1] / f'{cfg.iteration:06d}' / 'metric'
        plt.savefig(os.path.join(save_dir, f'{i:02d}-{metric_name}.png'))
        plt.close()

    mean_metric = np.mean(metrics_list, axis=0)
    std_metric = np.std(metrics_list, axis=0)

    n_steps = 30
    mean_metric_step = mean_metric[n_steps]
    std_metric_step = std_metric[n_steps]

    if mean_metric.shape[-1] == 10:
        mse, chamfer, emd, jscore, fscore, jfscore, perception, psnr, ssim, iou = mean_metric_step
        mse_std, chamfer_std, emd_std, jscore_std, fscore_std, jfscore_std, perception_std, psnr_std, ssim_std, iou_std = std_metric_step
        print(f'3D MSE: {mse:.4f} {mse_std:.4f}, 3D CD: {chamfer:.4f} {chamfer_std:.4f}, 3D EMD: {emd:.4f} {emd_std:.4f}', end=' ')
        print(f'J-Score: {jscore:.4f} {jscore_std:.4f}, F-Score: {fscore:.4f} {fscore_std:.4f}, JF-Score: {jfscore:.4f} {jfscore_std:.4f}', end=' ')
        print(f'perception: {perception:.4f} {perception_std:.4f}, PSNR: {psnr:.4f} {psnr_std:.4f}, SSIM: {ssim:.4f} {ssim_std:.4f}, IoU: {iou:.4f} {iou_std:.4f}')
    else:
        mse, chamfer, emd = mean_metric_step
        mse_std, chamfer_std, emd_std = std_metric_step
        print(f'3D MSE: {mse:.4f} {mse_std:.4f}, 3D CD: {chamfer:.4f} {chamfer_std:.4f}, 3D EMD: {emd:.4f} {emd_std:.4f}')


if __name__ == '__main__':

    best_models = {
        'cloth': ['cloth', 'train', 100000, [610, 650]],
        'rope': ['rope', 'train', 100000, [651, 691]],
        'paperbag': ['paperbag', 'train', 100000, [200, 220]],
        'sloth': ['sloth', 'train', 100000, [113, 133]],
        'box': ['box', 'train', 100000, [306, 323]],
        'bread': ['bread', 'train', 100000, [143, 163]],
    }

    arg_parser = argparse.ArgumentParser()
    arg_parser.add_argument('--task', type=str, required=True)
    arg_parser.add_argument('--state_only', action='store_true')
    args = arg_parser.parse_args()

    with open(root / f'log/{best_models[args.task][0]}/{best_models[args.task][1]}/hydra.yaml', 'r') as f:
        config = yaml.load(f, Loader=yaml.CLoader)
    cfg = OmegaConf.create(config)

    cfg.iteration = best_models[args.task][2]
    cfg.start_episode = best_models[args.task][3][0]
    cfg.end_episode = best_models[args.task][3][1]
    cfg.sim.num_steps = 1000
    cfg.sim.gripper_forcing = False
    cfg.sim.uniform = True
    cfg.sim.use_pv = True
    cfg.eval_state_only = args.state_only

    main(cfg)