|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image, ImageDraw |
|
|
|
|
|
|
|
def get_valid_mask(mask: np.ndarray): |
|
"""Convert mask from gr.Image(0 to 255, RGBA) to binary mask. |
|
""" |
|
if mask.ndim == 3: |
|
mask_pil = Image.fromarray(mask).convert('L') |
|
mask = np.array(mask_pil) |
|
if mask.max() == 255: |
|
mask = mask / 255 |
|
return mask |
|
|
|
|
|
def draw_points_on_image(image, points, intr=None, extr=None, z=None, radius_scale=0.006, intr_orig=None, extr_orig=None): |
|
use_2d = (intr is None and extr is None) |
|
same_cam = (intr_orig is None and extr_orig is None) |
|
if use_2d: |
|
assert same_cam |
|
else: |
|
assert intr is not None |
|
assert extr is not None |
|
assert z is not None |
|
if intr_orig is None: |
|
assert extr_orig is None |
|
intr_orig = intr |
|
extr_orig = extr |
|
overlay_rgba = Image.new("RGBA", image.size, 0) |
|
overlay_draw = ImageDraw.Draw(overlay_rgba) |
|
for point_key, point in points.items(): |
|
|
|
t_color = (255, 100, 100) |
|
o_color = (255, 50, 50) |
|
|
|
rad_draw = int(image.size[0] * radius_scale) + 2 |
|
|
|
p_start = point["start"] |
|
p_target = point["target"] |
|
|
|
if p_start is not None and p_target is not None: |
|
if same_cam: |
|
p_draw = int(p_start[0]), int(p_start[1]) |
|
t_draw = int(p_target[0]), int(p_target[1]) |
|
|
|
|
|
if use_2d: |
|
pt = (p_target[0] - p_start[0], p_target[1] - p_start[1]) |
|
pt_norm = np.linalg.norm(pt) |
|
pt_unit = (pt[0] / pt_norm, pt[1] / pt_norm) |
|
pt_tang = (pt_unit[1], -pt_unit[0]) |
|
tt1 = (t_draw[0] + pt_tang[0] * 0.1 * pt_norm - pt_unit[0] * 0.1 * pt_norm, |
|
t_draw[1] + pt_tang[1] * 0.1 * pt_norm - pt_unit[1] * 0.1 * pt_norm) |
|
tt2 = (t_draw[0] - pt_tang[0] * 0.1 * pt_norm - pt_unit[0] * 0.1 * pt_norm, |
|
t_draw[1] - pt_tang[1] * 0.1 * pt_norm - pt_unit[1] * 0.1 * pt_norm) |
|
|
|
|
|
else: |
|
p_start_3d = np.array([p_start[0], p_start[1], 1]) |
|
p_target_3d = np.array([p_target[0], p_target[1], 1]) |
|
p_start_3d = np.dot(np.linalg.inv(intr_orig), p_start_3d) |
|
p_target_3d = np.dot(np.linalg.inv(intr_orig), p_target_3d) |
|
p_start_3d = np.dot(np.linalg.inv(extr_orig), np.concatenate([p_start_3d, [1]])) |
|
p_target_3d = np.dot(np.linalg.inv(extr_orig), np.concatenate([p_target_3d, [1]])) |
|
camera_t = np.linalg.inv(extr_orig)[:3, 3] |
|
p_start_3d = (p_start_3d[:3] - camera_t) * (z - camera_t[2]) / (p_start_3d[2] - camera_t[2]) + camera_t |
|
p_target_3d = (p_target_3d[:3] - camera_t) * (z - camera_t[2]) / (p_target_3d[2] - camera_t[2]) + camera_t |
|
pt_3d = p_target_3d - p_start_3d |
|
pt_3d_norm = np.linalg.norm(pt_3d) |
|
pt_3d_unit = pt_3d / pt_3d_norm |
|
pt_3d_tang = np.array([pt_3d_unit[1], -pt_3d_unit[0], 0]) |
|
tt1_3d = p_target_3d + pt_3d_tang * 0.02 - pt_3d_unit * 0.02 |
|
tt2_3d = p_target_3d - pt_3d_tang * 0.02 - pt_3d_unit * 0.02 |
|
tt1_3d = np.dot(extr, np.concatenate([tt1_3d, [1]]))[:3] |
|
tt2_3d = np.dot(extr, np.concatenate([tt2_3d, [1]]))[:3] |
|
tt1_3d = np.dot(intr, tt1_3d) |
|
tt2_3d = np.dot(intr, tt2_3d) |
|
tt1_3d = (tt1_3d[:2] / tt1_3d[2]).astype(int) |
|
tt2_3d = (tt2_3d[:2] / tt2_3d[2]).astype(int) |
|
tt1 = (tt1_3d[0], tt1_3d[1]) |
|
tt2 = (tt2_3d[0], tt2_3d[1]) |
|
|
|
tt1_draw = int(tt1[0]), int(tt1[1]) |
|
tt2_draw = int(tt2[0]), int(tt2[1]) |
|
|
|
if not same_cam: |
|
assert not use_2d |
|
p_proj = np.dot(intr, np.dot(extr, np.concatenate([p_start_3d, [1]]))[:3]) |
|
p_draw = (p_proj[:2] / p_proj[2]).astype(int) |
|
t_proj = np.dot(intr, np.dot(extr, np.concatenate([p_target_3d, [1]]))[:3]) |
|
t_draw = (t_proj[:2] / t_proj[2]).astype(int) |
|
|
|
overlay_draw.line( |
|
(p_draw[0], p_draw[1], t_draw[0], t_draw[1]), |
|
fill=o_color, |
|
width=4, |
|
) |
|
|
|
overlay_draw.line( |
|
(t_draw[0], t_draw[1], tt1_draw[0], tt1_draw[1]), |
|
fill=o_color, |
|
width=4, |
|
) |
|
|
|
overlay_draw.line( |
|
(t_draw[0], t_draw[1], tt2_draw[0], tt2_draw[1]), |
|
fill=o_color, |
|
width=4, |
|
) |
|
|
|
if p_start is not None: |
|
if same_cam: |
|
p_draw = int(p_start[0]), int(p_start[1]) |
|
else: |
|
assert not use_2d |
|
|
|
p_start_3d = np.array([p_start[0], p_start[1], 1]) |
|
p_start_3d = np.dot(np.linalg.inv(intr_orig), p_start_3d) |
|
p_start_3d = np.dot(np.linalg.inv(extr_orig), np.concatenate([p_start_3d, [1]])) |
|
camera_t = np.linalg.inv(extr_orig)[:3, 3] |
|
p_start_3d = (p_start_3d[:3] - camera_t) * (z - camera_t[2]) / (p_start_3d[2] - camera_t[2]) + camera_t |
|
|
|
p_proj = np.dot(intr, np.dot(extr, np.concatenate([p_start_3d, [1]]))[:3]) |
|
p_draw = (p_proj[:2] / p_proj[2]).astype(int) |
|
|
|
overlay_draw.ellipse( |
|
( |
|
p_draw[0] - rad_draw, |
|
p_draw[1] - rad_draw, |
|
p_draw[0] + rad_draw, |
|
p_draw[1] + rad_draw, |
|
), |
|
fill=t_color, |
|
outline=o_color, |
|
width=2, |
|
) |
|
|
|
if p_target is not None: |
|
assert p_start is not None |
|
|
|
return Image.alpha_composite(image.convert("RGBA"), |
|
overlay_rgba).convert("RGB") |
|
|
|
|
|
def draw_raw_points_on_image(image, |
|
points, |
|
radius_scale=0.002): |
|
overlay_rgba = Image.new("RGBA", image.size, 0) |
|
overlay_draw = ImageDraw.Draw(overlay_rgba) |
|
for p in range(points.shape[0]): |
|
point = points[p] |
|
|
|
t_color = (150, 150, 255) |
|
o_color = (50, 50, 255) |
|
|
|
rad_draw = int(image.size[0] * radius_scale) |
|
|
|
t_draw = int(point[0]), int(point[1]) |
|
overlay_draw.ellipse( |
|
( |
|
t_draw[0] - rad_draw, |
|
t_draw[1] - rad_draw, |
|
t_draw[0] + rad_draw, |
|
t_draw[1] + rad_draw, |
|
), |
|
fill=t_color, |
|
outline=o_color, |
|
) |
|
|
|
return Image.alpha_composite(image.convert("RGBA"), |
|
overlay_rgba).convert("RGB") |
|
|
|
|
|
def draw_mask_on_image(image, mask): |
|
im_mask = np.uint8(mask * 255) |
|
im_mask_rgba = np.concatenate( |
|
( |
|
np.tile(im_mask[..., None], [1, 1, 3]), |
|
45 * np.ones( |
|
(im_mask.shape[0], im_mask.shape[1], 1), dtype=np.uint8), |
|
), |
|
axis=-1, |
|
) |
|
im_mask_rgba = Image.fromarray(im_mask_rgba).convert("RGBA") |
|
|
|
return Image.alpha_composite(image.convert("RGBA"), |
|
im_mask_rgba).convert("RGB") |
|
|
|
|
|
def on_change_single_global_state(keys, |
|
value, |
|
global_state, |
|
map_transform=None): |
|
if map_transform is not None: |
|
value = map_transform(value) |
|
|
|
curr_state = global_state |
|
if isinstance(keys, str): |
|
last_key = keys |
|
|
|
else: |
|
for k in keys[:-1]: |
|
curr_state = curr_state[k] |
|
|
|
last_key = keys[-1] |
|
|
|
curr_state[last_key] = value |
|
return global_state |
|
|
|
|
|
def get_latest_points_pair(points_dict): |
|
if not points_dict: |
|
return None |
|
point_idx = list(points_dict.keys()) |
|
latest_point_idx = max(point_idx) |
|
return latest_point_idx |