File size: 8,006 Bytes
f96995c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
def get_valid_mask(mask: np.ndarray):
"""Convert mask from gr.Image(0 to 255, RGBA) to binary mask.
"""
if mask.ndim == 3:
mask_pil = Image.fromarray(mask).convert('L')
mask = np.array(mask_pil)
if mask.max() == 255:
mask = mask / 255
return mask
def draw_points_on_image(image, points, intr=None, extr=None, z=None, radius_scale=0.006, intr_orig=None, extr_orig=None):
use_2d = (intr is None and extr is None)
same_cam = (intr_orig is None and extr_orig is None)
if use_2d:
assert same_cam
else:
assert intr is not None
assert extr is not None
assert z is not None
if intr_orig is None:
assert extr_orig is None
intr_orig = intr
extr_orig = extr
overlay_rgba = Image.new("RGBA", image.size, 0)
overlay_draw = ImageDraw.Draw(overlay_rgba)
for point_key, point in points.items():
t_color = (255, 100, 100)
o_color = (255, 50, 50)
rad_draw = int(image.size[0] * radius_scale) + 2
p_start = point["start"]
p_target = point["target"]
if p_start is not None and p_target is not None:
if same_cam:
p_draw = int(p_start[0]), int(p_start[1])
t_draw = int(p_target[0]), int(p_target[1])
# 2d
if use_2d:
pt = (p_target[0] - p_start[0], p_target[1] - p_start[1])
pt_norm = np.linalg.norm(pt)
pt_unit = (pt[0] / pt_norm, pt[1] / pt_norm)
pt_tang = (pt_unit[1], -pt_unit[0])
tt1 = (t_draw[0] + pt_tang[0] * 0.1 * pt_norm - pt_unit[0] * 0.1 * pt_norm,
t_draw[1] + pt_tang[1] * 0.1 * pt_norm - pt_unit[1] * 0.1 * pt_norm)
tt2 = (t_draw[0] - pt_tang[0] * 0.1 * pt_norm - pt_unit[0] * 0.1 * pt_norm,
t_draw[1] - pt_tang[1] * 0.1 * pt_norm - pt_unit[1] * 0.1 * pt_norm)
# 3d
else:
p_start_3d = np.array([p_start[0], p_start[1], 1])
p_target_3d = np.array([p_target[0], p_target[1], 1])
p_start_3d = np.dot(np.linalg.inv(intr_orig), p_start_3d)
p_target_3d = np.dot(np.linalg.inv(intr_orig), p_target_3d)
p_start_3d = np.dot(np.linalg.inv(extr_orig), np.concatenate([p_start_3d, [1]]))
p_target_3d = np.dot(np.linalg.inv(extr_orig), np.concatenate([p_target_3d, [1]]))
camera_t = np.linalg.inv(extr_orig)[:3, 3]
p_start_3d = (p_start_3d[:3] - camera_t) * (z - camera_t[2]) / (p_start_3d[2] - camera_t[2]) + camera_t
p_target_3d = (p_target_3d[:3] - camera_t) * (z - camera_t[2]) / (p_target_3d[2] - camera_t[2]) + camera_t
pt_3d = p_target_3d - p_start_3d
pt_3d_norm = np.linalg.norm(pt_3d)
pt_3d_unit = pt_3d / pt_3d_norm
pt_3d_tang = np.array([pt_3d_unit[1], -pt_3d_unit[0], 0])
tt1_3d = p_target_3d + pt_3d_tang * 0.02 - pt_3d_unit * 0.02
tt2_3d = p_target_3d - pt_3d_tang * 0.02 - pt_3d_unit * 0.02
tt1_3d = np.dot(extr, np.concatenate([tt1_3d, [1]]))[:3]
tt2_3d = np.dot(extr, np.concatenate([tt2_3d, [1]]))[:3]
tt1_3d = np.dot(intr, tt1_3d)
tt2_3d = np.dot(intr, tt2_3d)
tt1_3d = (tt1_3d[:2] / tt1_3d[2]).astype(int)
tt2_3d = (tt2_3d[:2] / tt2_3d[2]).astype(int)
tt1 = (tt1_3d[0], tt1_3d[1])
tt2 = (tt2_3d[0], tt2_3d[1])
tt1_draw = int(tt1[0]), int(tt1[1])
tt2_draw = int(tt2[0]), int(tt2[1])
if not same_cam:
assert not use_2d
p_proj = np.dot(intr, np.dot(extr, np.concatenate([p_start_3d, [1]]))[:3])
p_draw = (p_proj[:2] / p_proj[2]).astype(int)
t_proj = np.dot(intr, np.dot(extr, np.concatenate([p_target_3d, [1]]))[:3])
t_draw = (t_proj[:2] / t_proj[2]).astype(int)
overlay_draw.line(
(p_draw[0], p_draw[1], t_draw[0], t_draw[1]),
fill=o_color,
width=4,
)
overlay_draw.line(
(t_draw[0], t_draw[1], tt1_draw[0], tt1_draw[1]),
fill=o_color,
width=4,
)
overlay_draw.line(
(t_draw[0], t_draw[1], tt2_draw[0], tt2_draw[1]),
fill=o_color,
width=4,
)
if p_start is not None:
if same_cam:
p_draw = int(p_start[0]), int(p_start[1])
else:
assert not use_2d
# 3d
p_start_3d = np.array([p_start[0], p_start[1], 1])
p_start_3d = np.dot(np.linalg.inv(intr_orig), p_start_3d)
p_start_3d = np.dot(np.linalg.inv(extr_orig), np.concatenate([p_start_3d, [1]]))
camera_t = np.linalg.inv(extr_orig)[:3, 3]
p_start_3d = (p_start_3d[:3] - camera_t) * (z - camera_t[2]) / (p_start_3d[2] - camera_t[2]) + camera_t
p_proj = np.dot(intr, np.dot(extr, np.concatenate([p_start_3d, [1]]))[:3])
p_draw = (p_proj[:2] / p_proj[2]).astype(int)
overlay_draw.ellipse(
(
p_draw[0] - rad_draw,
p_draw[1] - rad_draw,
p_draw[0] + rad_draw,
p_draw[1] + rad_draw,
),
fill=t_color,
outline=o_color,
width=2,
)
if p_target is not None:
assert p_start is not None
return Image.alpha_composite(image.convert("RGBA"),
overlay_rgba).convert("RGB")
def draw_raw_points_on_image(image,
points,
radius_scale=0.002):
overlay_rgba = Image.new("RGBA", image.size, 0)
overlay_draw = ImageDraw.Draw(overlay_rgba)
for p in range(points.shape[0]):
point = points[p]
t_color = (150, 150, 255)
o_color = (50, 50, 255)
rad_draw = int(image.size[0] * radius_scale)
t_draw = int(point[0]), int(point[1])
overlay_draw.ellipse(
(
t_draw[0] - rad_draw,
t_draw[1] - rad_draw,
t_draw[0] + rad_draw,
t_draw[1] + rad_draw,
),
fill=t_color,
outline=o_color,
)
return Image.alpha_composite(image.convert("RGBA"),
overlay_rgba).convert("RGB")
def draw_mask_on_image(image, mask):
im_mask = np.uint8(mask * 255)
im_mask_rgba = np.concatenate(
(
np.tile(im_mask[..., None], [1, 1, 3]),
45 * np.ones(
(im_mask.shape[0], im_mask.shape[1], 1), dtype=np.uint8),
),
axis=-1,
)
im_mask_rgba = Image.fromarray(im_mask_rgba).convert("RGBA")
return Image.alpha_composite(image.convert("RGBA"),
im_mask_rgba).convert("RGB")
def on_change_single_global_state(keys,
value,
global_state,
map_transform=None):
if map_transform is not None:
value = map_transform(value)
curr_state = global_state
if isinstance(keys, str):
last_key = keys
else:
for k in keys[:-1]:
curr_state = curr_state[k]
last_key = keys[-1]
curr_state[last_key] = value
return global_state
def get_latest_points_pair(points_dict):
if not points_dict:
return None
point_idx = list(points_dict.keys())
latest_point_idx = max(point_idx)
return latest_point_idx |