jzou1995's picture
Update app.py
68b7136 verified
raw
history blame
11.3 kB
import os
import re
import json
import requests
from typing import List, Dict, Optional, Tuple
import gradio as gr
from googlesearch import search
import google.generativeai as genai
from google.generativeai.types import HarmCategory, HarmBlockThreshold
def initialize_gemini(api_key: str):
"""Initialize the Google Gemini API with appropriate configurations"""
genai.configure(api_key=api_key)
generation_config = {
"temperature": 0.2,
"top_p": 0.8,
"top_k": 40,
"max_output_tokens": 1024,
}
safety_settings = {
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
}
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
generation_config=generation_config,
safety_settings=safety_settings
)
return model
def google_search_naics(company_name: str) -> List[str]:
"""
Find potential NAICS codes for a company using multiple targeted Google searches
Uses more specific search queries to improve results
"""
naics_codes = set()
# Create multiple search queries for better results
queries = [
f"NAICS code for {company_name}",
f"what is {company_name} company NAICS code",
f"{company_name} business entity NAICS classification",
f"{company_name} industry classification NAICS",
f"{company_name} company information NAICS"
]
try:
print(f"🔎 Searching Google for NAICS codes for '{company_name}'...")
for query in queries:
print(f" Query: {query}")
try:
# Search with each query, limiting to 3 results per query
search_results = search(query, stop=3, pause=2)
for result_url in search_results:
try:
response = requests.get(result_url, timeout=5)
if response.status_code == 200:
# Extract 6-digit NAICS codes
found_codes = re.findall(r'\b\d{6}\b', response.text)
naics_codes.update(found_codes)
# If we find codes, print them
if found_codes:
print(f" Found codes in {result_url}: {found_codes}")
except Exception as e:
print(f" ⚠️ Error fetching {result_url}: {e}")
except Exception as e:
print(f" ⚠️ Error with query '{query}': {e}")
continue
# Return unique codes, limited to 10 most common
return list(naics_codes)[:10]
except Exception as e:
print(f"❌ Error performing Google search: {str(e)}")
return []
def get_naics_classification(model, company_name: str, context: str, candidates: List[str]) -> dict:
"""
Use Gemini AI to determine the most appropriate NAICS code from candidates
First provides reasoning, then returns the NAICS code and explanation
"""
try:
print("🤖 AI is analyzing NAICS classification...")
# If we have candidate codes from Google search
if candidates:
# Create a prompt that asks for research on the candidates
prompt = f"""
You are a NAICS code classification expert. Based on the company information provided and the NAICS code candidates found from Google search, determine the most appropriate NAICS code.
Company Name: {company_name}
Context Information: {context}
NAICS Code Candidates from Google Search: {candidates}
First, research what these NAICS codes represent:
1. For each NAICS code candidate, briefly explain what industry or business activity it corresponds to.
2. Then explain which industry classification best matches this company based on the name and context provided.
3. Finally, select the single most appropriate NAICS code from the candidates, or suggest a different one if none match.
Your response should be in this format:
RESEARCH: [Brief explanation of what each NAICS code represents]
REASONING: [Your detailed reasoning about why the chosen industry classification is most appropriate for this company]
NAICS_CODE: [6-digit NAICS code]
"""
# If no candidates were found from Google search
else:
prompt = f"""
You are a NAICS code classification expert. Based on the company information provided, determine the most appropriate NAICS code.
Company Name: {company_name}
Context Information: {context}
First, analyze what industry this company likely belongs to based on its name and the provided context.
Consider standard business classifications and determine the most appropriate category.
Then provide the single most appropriate 6-digit NAICS code.
Your response should be in this format:
REASONING: [Your detailed reasoning about the company's industry classification, including what business activities it likely performs]
NAICS_CODE: [6-digit NAICS code]
"""
response = model.generate_content(prompt)
response_text = response.text.strip()
# Create result dictionary
result = {}
# Extract research if available
if "RESEARCH:" in response_text:
research_match = re.search(r'RESEARCH:(.*?)REASONING:', response_text, re.DOTALL | re.IGNORECASE)
if research_match:
result["research"] = research_match.group(1).strip()
# Extract reasoning
reasoning_match = re.search(r'REASONING:(.*?)NAICS_CODE:', response_text, re.DOTALL | re.IGNORECASE)
result["reasoning"] = reasoning_match.group(1).strip() if reasoning_match else "No reasoning provided."
# Extract NAICS code
naics_match = re.search(r'NAICS_CODE:(.*?)(\d{6})', response_text, re.DOTALL)
if naics_match:
result["naics_code"] = naics_match.group(2)
else:
# Try to find any 6-digit code in the response
code_match = re.search(r'\b(\d{6})\b', response_text)
result["naics_code"] = code_match.group(1) if code_match else "000000"
return result
except Exception as e:
print(f"❌ Error getting NAICS classification: {str(e)}")
return {
"naics_code": "000000",
"reasoning": f"Error analyzing company: {str(e)}"
}
def find_naics_code(company_name: str, context: str = "", api_key: Optional[str] = None) -> Dict:
"""
Core function to find NAICS code for a company that can be called from different interfaces
Args:
company_name: Name of the company
context: Brief description of the company (optional)
api_key: Google Gemini API key (if None, will try to get from environment variable)
Returns:
Dictionary with NAICS code, reasoning, and optional research
"""
# Get API key from environment if not provided
if not api_key:
api_key = os.environ.get('GEMINI_API_KEY')
if not api_key:
return {
"error": "No API key provided. Set GEMINI_API_KEY environment variable or pass as parameter.",
"naics_code": "000000",
"reasoning": "Error: API key missing"
}
# Initialize Gemini model
try:
model = initialize_gemini(api_key)
except Exception as e:
return {
"error": f"Failed to initialize Gemini API: {str(e)}",
"naics_code": "000000",
"reasoning": f"Error: {str(e)}"
}
# Find NAICS Code Candidates via Google search
naics_candidates = google_search_naics(company_name)
# Get classification from Gemini
if not naics_candidates:
print("No NAICS codes found from Google search.")
result = get_naics_classification(model, company_name, context, [])
else:
print(f"Found {len(naics_candidates)} NAICS candidates: {naics_candidates}")
result = get_naics_classification(model, company_name, context, naics_candidates)
# Add metadata
result["company_name"] = company_name
result["context"] = context
result["candidates"] = naics_candidates
return result
# Gradio interface function
def classify_company(company_name: str, company_description: str, api_key: str = None) -> Tuple[str, str, str]:
"""Process inputs from Gradio and return formatted results"""
if not api_key:
api_key = os.environ.get('GEMINI_API_KEY')
if not company_name:
return "Error: Company name is required", "", ""
result = find_naics_code(company_name, company_description, api_key)
# Format the NAICS code output
naics_code = f"**NAICS Code: {result['naics_code']}**"
# Format the research output
research = ""
if "research" in result and result["research"]:
research = f"## Research on NAICS Codes\n\n{result['research']}"
# Format the reasoning output
reasoning = f"## Analysis\n\n{result['reasoning']}"
return naics_code, research, reasoning
# Create the Gradio interface
def create_gradio_interface():
with gr.Blocks(title="NAICS Code Finder") as demo:
gr.Markdown("# NAICS Code Finder")
gr.Markdown("Enter a company name and optional description to find the most appropriate NAICS code.")
with gr.Row():
with gr.Column():
company_name = gr.Textbox(label="Company Name", placeholder="Enter company name")
company_description = gr.Textbox(label="Company Description (optional)", placeholder="Brief description of the company")
api_key = gr.Textbox(
label="Gemini API Key (optional)",
placeholder="Enter your API key or set GEMINI_API_KEY env variable",
visible=not bool(os.environ.get('GEMINI_API_KEY'))
)
submit_btn = gr.Button("Find NAICS Code")
with gr.Column():
naics_output = gr.Markdown(label="NAICS Code")
research_output = gr.Markdown(label="Research")
reasoning_output = gr.Markdown(label="Reasoning")
submit_btn.click(
classify_company,
inputs=[company_name, company_description, api_key],
outputs=[naics_output, research_output, reasoning_output]
)
gr.Examples(
[
["Apple Inc", "Tech company that makes iPhones and computers"],
["Starbucks", "Coffee shop chain"],
["Bank of America", "Banking and financial services"],
["Tesla", "Electric vehicle manufacturer"]
],
inputs=[company_name, company_description]
)
return demo
# Create and launch the interface
demo = create_gradio_interface()
# For Spaces deployment
if __name__ == "__main__":
demo.launch()