File size: 11,343 Bytes
486a9e9 68b7136 486a9e9 b5407c0 486a9e9 b5407c0 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 b5407c0 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 b5407c0 486a9e9 b5407c0 203605e 2b57935 203605e b5407c0 486a9e9 203605e b5407c0 486a9e9 3a20bdf 203605e 486a9e9 203605e b5407c0 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 203605e 486a9e9 68b7136 486a9e9 68b7136 203605e 68b7136 b5407c0 68b7136 203605e 68b7136 486a9e9 68b7136 b5407c0 68b7136 b5407c0 68b7136 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import re
import json
import requests
from typing import List, Dict, Optional, Tuple
import gradio as gr
from googlesearch import search
import google.generativeai as genai
from google.generativeai.types import HarmCategory, HarmBlockThreshold
def initialize_gemini(api_key: str):
"""Initialize the Google Gemini API with appropriate configurations"""
genai.configure(api_key=api_key)
generation_config = {
"temperature": 0.2,
"top_p": 0.8,
"top_k": 40,
"max_output_tokens": 1024,
}
safety_settings = {
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
}
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
generation_config=generation_config,
safety_settings=safety_settings
)
return model
def google_search_naics(company_name: str) -> List[str]:
"""
Find potential NAICS codes for a company using multiple targeted Google searches
Uses more specific search queries to improve results
"""
naics_codes = set()
# Create multiple search queries for better results
queries = [
f"NAICS code for {company_name}",
f"what is {company_name} company NAICS code",
f"{company_name} business entity NAICS classification",
f"{company_name} industry classification NAICS",
f"{company_name} company information NAICS"
]
try:
print(f"🔎 Searching Google for NAICS codes for '{company_name}'...")
for query in queries:
print(f" Query: {query}")
try:
# Search with each query, limiting to 3 results per query
search_results = search(query, stop=3, pause=2)
for result_url in search_results:
try:
response = requests.get(result_url, timeout=5)
if response.status_code == 200:
# Extract 6-digit NAICS codes
found_codes = re.findall(r'\b\d{6}\b', response.text)
naics_codes.update(found_codes)
# If we find codes, print them
if found_codes:
print(f" Found codes in {result_url}: {found_codes}")
except Exception as e:
print(f" ⚠️ Error fetching {result_url}: {e}")
except Exception as e:
print(f" ⚠️ Error with query '{query}': {e}")
continue
# Return unique codes, limited to 10 most common
return list(naics_codes)[:10]
except Exception as e:
print(f"❌ Error performing Google search: {str(e)}")
return []
def get_naics_classification(model, company_name: str, context: str, candidates: List[str]) -> dict:
"""
Use Gemini AI to determine the most appropriate NAICS code from candidates
First provides reasoning, then returns the NAICS code and explanation
"""
try:
print("🤖 AI is analyzing NAICS classification...")
# If we have candidate codes from Google search
if candidates:
# Create a prompt that asks for research on the candidates
prompt = f"""
You are a NAICS code classification expert. Based on the company information provided and the NAICS code candidates found from Google search, determine the most appropriate NAICS code.
Company Name: {company_name}
Context Information: {context}
NAICS Code Candidates from Google Search: {candidates}
First, research what these NAICS codes represent:
1. For each NAICS code candidate, briefly explain what industry or business activity it corresponds to.
2. Then explain which industry classification best matches this company based on the name and context provided.
3. Finally, select the single most appropriate NAICS code from the candidates, or suggest a different one if none match.
Your response should be in this format:
RESEARCH: [Brief explanation of what each NAICS code represents]
REASONING: [Your detailed reasoning about why the chosen industry classification is most appropriate for this company]
NAICS_CODE: [6-digit NAICS code]
"""
# If no candidates were found from Google search
else:
prompt = f"""
You are a NAICS code classification expert. Based on the company information provided, determine the most appropriate NAICS code.
Company Name: {company_name}
Context Information: {context}
First, analyze what industry this company likely belongs to based on its name and the provided context.
Consider standard business classifications and determine the most appropriate category.
Then provide the single most appropriate 6-digit NAICS code.
Your response should be in this format:
REASONING: [Your detailed reasoning about the company's industry classification, including what business activities it likely performs]
NAICS_CODE: [6-digit NAICS code]
"""
response = model.generate_content(prompt)
response_text = response.text.strip()
# Create result dictionary
result = {}
# Extract research if available
if "RESEARCH:" in response_text:
research_match = re.search(r'RESEARCH:(.*?)REASONING:', response_text, re.DOTALL | re.IGNORECASE)
if research_match:
result["research"] = research_match.group(1).strip()
# Extract reasoning
reasoning_match = re.search(r'REASONING:(.*?)NAICS_CODE:', response_text, re.DOTALL | re.IGNORECASE)
result["reasoning"] = reasoning_match.group(1).strip() if reasoning_match else "No reasoning provided."
# Extract NAICS code
naics_match = re.search(r'NAICS_CODE:(.*?)(\d{6})', response_text, re.DOTALL)
if naics_match:
result["naics_code"] = naics_match.group(2)
else:
# Try to find any 6-digit code in the response
code_match = re.search(r'\b(\d{6})\b', response_text)
result["naics_code"] = code_match.group(1) if code_match else "000000"
return result
except Exception as e:
print(f"❌ Error getting NAICS classification: {str(e)}")
return {
"naics_code": "000000",
"reasoning": f"Error analyzing company: {str(e)}"
}
def find_naics_code(company_name: str, context: str = "", api_key: Optional[str] = None) -> Dict:
"""
Core function to find NAICS code for a company that can be called from different interfaces
Args:
company_name: Name of the company
context: Brief description of the company (optional)
api_key: Google Gemini API key (if None, will try to get from environment variable)
Returns:
Dictionary with NAICS code, reasoning, and optional research
"""
# Get API key from environment if not provided
if not api_key:
api_key = os.environ.get('GEMINI_API_KEY')
if not api_key:
return {
"error": "No API key provided. Set GEMINI_API_KEY environment variable or pass as parameter.",
"naics_code": "000000",
"reasoning": "Error: API key missing"
}
# Initialize Gemini model
try:
model = initialize_gemini(api_key)
except Exception as e:
return {
"error": f"Failed to initialize Gemini API: {str(e)}",
"naics_code": "000000",
"reasoning": f"Error: {str(e)}"
}
# Find NAICS Code Candidates via Google search
naics_candidates = google_search_naics(company_name)
# Get classification from Gemini
if not naics_candidates:
print("No NAICS codes found from Google search.")
result = get_naics_classification(model, company_name, context, [])
else:
print(f"Found {len(naics_candidates)} NAICS candidates: {naics_candidates}")
result = get_naics_classification(model, company_name, context, naics_candidates)
# Add metadata
result["company_name"] = company_name
result["context"] = context
result["candidates"] = naics_candidates
return result
# Gradio interface function
def classify_company(company_name: str, company_description: str, api_key: str = None) -> Tuple[str, str, str]:
"""Process inputs from Gradio and return formatted results"""
if not api_key:
api_key = os.environ.get('GEMINI_API_KEY')
if not company_name:
return "Error: Company name is required", "", ""
result = find_naics_code(company_name, company_description, api_key)
# Format the NAICS code output
naics_code = f"**NAICS Code: {result['naics_code']}**"
# Format the research output
research = ""
if "research" in result and result["research"]:
research = f"## Research on NAICS Codes\n\n{result['research']}"
# Format the reasoning output
reasoning = f"## Analysis\n\n{result['reasoning']}"
return naics_code, research, reasoning
# Create the Gradio interface
def create_gradio_interface():
with gr.Blocks(title="NAICS Code Finder") as demo:
gr.Markdown("# NAICS Code Finder")
gr.Markdown("Enter a company name and optional description to find the most appropriate NAICS code.")
with gr.Row():
with gr.Column():
company_name = gr.Textbox(label="Company Name", placeholder="Enter company name")
company_description = gr.Textbox(label="Company Description (optional)", placeholder="Brief description of the company")
api_key = gr.Textbox(
label="Gemini API Key (optional)",
placeholder="Enter your API key or set GEMINI_API_KEY env variable",
visible=not bool(os.environ.get('GEMINI_API_KEY'))
)
submit_btn = gr.Button("Find NAICS Code")
with gr.Column():
naics_output = gr.Markdown(label="NAICS Code")
research_output = gr.Markdown(label="Research")
reasoning_output = gr.Markdown(label="Reasoning")
submit_btn.click(
classify_company,
inputs=[company_name, company_description, api_key],
outputs=[naics_output, research_output, reasoning_output]
)
gr.Examples(
[
["Apple Inc", "Tech company that makes iPhones and computers"],
["Starbucks", "Coffee shop chain"],
["Bank of America", "Banking and financial services"],
["Tesla", "Electric vehicle manufacturer"]
],
inputs=[company_name, company_description]
)
return demo
# Create and launch the interface
demo = create_gradio_interface()
# For Spaces deployment
if __name__ == "__main__":
demo.launch() |