Translator-app / app.py
jeevitha-app's picture
Upload app.py
9c8f5e4 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
from sentence_transformers import SentenceTransformer
import torch
import torch.nn.functional as F
import faiss
import numpy as np
import fitz # PyMuPDF for PDF
import docx # for DOCX
from sacrebleu import corpus_bleu
import matplotlib.pyplot as plt
# Load Models
lang_detect_model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection")
lang_detect_tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection")
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
embed_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
# Language Mappings
id2lang = lang_detect_model.config.id2label
nllb_langs = {
"eng_Latn": "English", "fra_Latn": "French", "hin_Deva": "Hindi",
"spa_Latn": "Spanish", "deu_Latn": "German", "tam_Taml": "Tamil",
"tel_Telu": "Telugu", "jpn_Jpan": "Japanese", "zho_Hans": "Chinese",
"arb_Arab": "Arabic", "san_Deva": "Sanskrit"
}
xlm_to_nllb = {
"en": "eng_Latn", "fr": "fra_Latn", "hi": "hin_Deva", "es": "spa_Latn", "de": "deu_Latn",
"ta": "tam_Taml", "te": "tel_Telu", "ja": "jpn_Jpan", "zh": "zho_Hans", "ar": "arb_Arab",
"sa": "san_Deva"
}
# Semantic Corpus and Index
corpus = [
"धर्म एव हतो हन्ति धर्मो रक्षति रक्षितः",
"Dharma when destroyed, destroys; when protected, protects.",
"The moon affects tides and mood, according to Jyotisha",
"One should eat according to the season – Rituacharya",
"Balance of Tridosha is health – Ayurveda principle",
"Ethics in Mahabharata reflect situational dharma",
"Meditation improves memory and mental clarity",
"Jyotisha links planetary motion with life patterns"
]
corpus_embeddings = embed_model.encode(corpus, convert_to_numpy=True)
dimension = corpus_embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(corpus_embeddings)
# Utility Functions
def detect_language(text):
inputs = lang_detect_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = lang_detect_model(**inputs)
probs = F.softmax(outputs.logits, dim=1)
pred = torch.argmax(probs, dim=1).item()
return id2lang[pred]
def translate(text, src_code, tgt_code):
trans_tokenizer.src_lang = src_code
encoded = trans_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
try:
target_lang_id = trans_tokenizer.convert_tokens_to_ids([tgt_code])[0]
generated = trans_model.generate(**encoded, forced_bos_token_id=target_lang_id)
return trans_tokenizer.decode(generated[0], skip_special_tokens=True)
except:
return ""
def search_semantic(query, top_k=3):
query_embedding = embed_model.encode([query])
distances, indices = index.search(query_embedding, top_k)
return [(corpus[i], float(distances[0][idx])) for idx, i in enumerate(indices[0])]
def extract_text_from_file(file):
name = file.name.lower()
if name.endswith(".txt"):
return file.read().decode("utf-8")
elif name.endswith(".pdf"):
with fitz.open(stream=file.read(), filetype="pdf") as doc:
return "\n".join([page.get_text() for page in doc])
elif name.endswith(".docx"):
document = docx.Document(file)
return "\n".join([para.text for para in document.paragraphs])
return "❌ Unsupported file format."
def full_pipeline_file(file, target_lang_code, human_ref=""):
user_input_text = extract_text_from_file(file)
if not user_input_text.strip():
return "⚠️ Empty file", "", [], "", ""
detected_lang = detect_language(user_input_text)
src_nllb = xlm_to_nllb.get(detected_lang, "eng_Latn")
translated = translate(user_input_text, src_nllb, target_lang_code)
if not translated:
return detected_lang, "❌ Translation failed", [], "", ""
sem_results = search_semantic(translated)
result_list = [f"{i+1}. {txt} (Score: {score:.2f})" for i, (txt, score) in enumerate(sem_results)]
labels = [f"{i+1}" for i in range(len(sem_results))]
scores = [score for _, score in sem_results]
plt.figure(figsize=(6, 4))
bars = plt.barh(labels, scores, color="lightgreen")
plt.xlabel("Similarity Score")
plt.title("Top Semantic Matches")
plt.gca().invert_yaxis()
for bar in bars:
plt.text(bar.get_width() + 0.01, bar.get_y() + 0.1, f"{bar.get_width():.2f}", fontsize=8)
plt.tight_layout()
plot_path = "/tmp/sem_plot.png"
plt.savefig(plot_path)
plt.close()
bleu_score = ""
if human_ref.strip():
bleu = corpus_bleu([translated], [[human_ref]])
bleu_score = f"{bleu.score:.2f}"
return detected_lang, translated, result_list, plot_path, bleu_score
# Launch Gradio App
gr.Interface(
fn=full_pipeline_file,
inputs=[
gr.File(label="Upload .txt / .pdf / .docx file", file_types=[".txt", ".pdf", ".docx"]),
gr.Dropdown(label="Target Language", choices=list(nllb_langs.keys()), value="eng_Latn"),
gr.Textbox(label="(Optional) Human Reference Translation", lines=2, placeholder="Paste human translation (for BLEU)...")
],
outputs=[
gr.Textbox(label="Detected Language"),
gr.Textbox(label="Translated Text"),
gr.Textbox(label="Top Semantic Matches"),
gr.Image(label="Semantic Similarity Plot"),
gr.Textbox(label="BLEU Score")
],
title="📂 File-Based Multilingual Translator + Semantic Search",
description="Upload a `.txt`, `.pdf`, or `.docx` file in any language. Translates it and provides semantic search."
).launch(debug=True)