import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM from sentence_transformers import SentenceTransformer import torch import torch.nn.functional as F import faiss import numpy as np import fitz # PyMuPDF for PDF import docx # for DOCX from sacrebleu import corpus_bleu import matplotlib.pyplot as plt # Load Models lang_detect_model = AutoModelForSequenceClassification.from_pretrained("papluca/xlm-roberta-base-language-detection") lang_detect_tokenizer = AutoTokenizer.from_pretrained("papluca/xlm-roberta-base-language-detection") trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") embed_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") # Language Mappings id2lang = lang_detect_model.config.id2label nllb_langs = { "eng_Latn": "English", "fra_Latn": "French", "hin_Deva": "Hindi", "spa_Latn": "Spanish", "deu_Latn": "German", "tam_Taml": "Tamil", "tel_Telu": "Telugu", "jpn_Jpan": "Japanese", "zho_Hans": "Chinese", "arb_Arab": "Arabic", "san_Deva": "Sanskrit" } xlm_to_nllb = { "en": "eng_Latn", "fr": "fra_Latn", "hi": "hin_Deva", "es": "spa_Latn", "de": "deu_Latn", "ta": "tam_Taml", "te": "tel_Telu", "ja": "jpn_Jpan", "zh": "zho_Hans", "ar": "arb_Arab", "sa": "san_Deva" } # Semantic Corpus and Index corpus = [ "धर्म एव हतो हन्ति धर्मो रक्षति रक्षितः", "Dharma when destroyed, destroys; when protected, protects.", "The moon affects tides and mood, according to Jyotisha", "One should eat according to the season – Rituacharya", "Balance of Tridosha is health – Ayurveda principle", "Ethics in Mahabharata reflect situational dharma", "Meditation improves memory and mental clarity", "Jyotisha links planetary motion with life patterns" ] corpus_embeddings = embed_model.encode(corpus, convert_to_numpy=True) dimension = corpus_embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(corpus_embeddings) # Utility Functions def detect_language(text): inputs = lang_detect_tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = lang_detect_model(**inputs) probs = F.softmax(outputs.logits, dim=1) pred = torch.argmax(probs, dim=1).item() return id2lang[pred] def translate(text, src_code, tgt_code): trans_tokenizer.src_lang = src_code encoded = trans_tokenizer(text, return_tensors="pt", truncation=True, padding=True) try: target_lang_id = trans_tokenizer.convert_tokens_to_ids([tgt_code])[0] generated = trans_model.generate(**encoded, forced_bos_token_id=target_lang_id) return trans_tokenizer.decode(generated[0], skip_special_tokens=True) except: return "" def search_semantic(query, top_k=3): query_embedding = embed_model.encode([query]) distances, indices = index.search(query_embedding, top_k) return [(corpus[i], float(distances[0][idx])) for idx, i in enumerate(indices[0])] def extract_text_from_file(file): name = file.name.lower() if name.endswith(".txt"): return file.read().decode("utf-8") elif name.endswith(".pdf"): with fitz.open(stream=file.read(), filetype="pdf") as doc: return "\n".join([page.get_text() for page in doc]) elif name.endswith(".docx"): document = docx.Document(file) return "\n".join([para.text for para in document.paragraphs]) return "❌ Unsupported file format." def full_pipeline_file(file, target_lang_code, human_ref=""): user_input_text = extract_text_from_file(file) if not user_input_text.strip(): return "⚠️ Empty file", "", [], "", "" detected_lang = detect_language(user_input_text) src_nllb = xlm_to_nllb.get(detected_lang, "eng_Latn") translated = translate(user_input_text, src_nllb, target_lang_code) if not translated: return detected_lang, "❌ Translation failed", [], "", "" sem_results = search_semantic(translated) result_list = [f"{i+1}. {txt} (Score: {score:.2f})" for i, (txt, score) in enumerate(sem_results)] labels = [f"{i+1}" for i in range(len(sem_results))] scores = [score for _, score in sem_results] plt.figure(figsize=(6, 4)) bars = plt.barh(labels, scores, color="lightgreen") plt.xlabel("Similarity Score") plt.title("Top Semantic Matches") plt.gca().invert_yaxis() for bar in bars: plt.text(bar.get_width() + 0.01, bar.get_y() + 0.1, f"{bar.get_width():.2f}", fontsize=8) plt.tight_layout() plot_path = "/tmp/sem_plot.png" plt.savefig(plot_path) plt.close() bleu_score = "" if human_ref.strip(): bleu = corpus_bleu([translated], [[human_ref]]) bleu_score = f"{bleu.score:.2f}" return detected_lang, translated, result_list, plot_path, bleu_score # Launch Gradio App gr.Interface( fn=full_pipeline_file, inputs=[ gr.File(label="Upload .txt / .pdf / .docx file", file_types=[".txt", ".pdf", ".docx"]), gr.Dropdown(label="Target Language", choices=list(nllb_langs.keys()), value="eng_Latn"), gr.Textbox(label="(Optional) Human Reference Translation", lines=2, placeholder="Paste human translation (for BLEU)...") ], outputs=[ gr.Textbox(label="Detected Language"), gr.Textbox(label="Translated Text"), gr.Textbox(label="Top Semantic Matches"), gr.Image(label="Semantic Similarity Plot"), gr.Textbox(label="BLEU Score") ], title="📂 File-Based Multilingual Translator + Semantic Search", description="Upload a `.txt`, `.pdf`, or `.docx` file in any language. Translates it and provides semantic search." ).launch(debug=True)