|
import yfinance as yf |
|
import pandas as pd |
|
|
|
def process_dataframe(df): |
|
def get_rsi(close, lookback): |
|
ret = close.diff() |
|
up = [] |
|
down = [] |
|
for i in range(len(ret)): |
|
if ret[i] < 0: |
|
up.append(0) |
|
down.append(ret[i]) |
|
else: |
|
up.append(ret[i]) |
|
down.append(0) |
|
up_series = pd.Series(up) |
|
down_series = pd.Series(down).abs() |
|
up_ewm = up_series.ewm(com=lookback - 1, adjust=False).mean() |
|
down_ewm = down_series.ewm(com=lookback - 1, adjust=False).mean() |
|
rs = up_ewm / down_ewm |
|
rsi = 100 - (100 / (1 + rs)) |
|
rsi_df = pd.DataFrame(rsi).rename(columns={0: 'RSI'}).set_index(close.index) |
|
rsi_df = rsi_df.dropna() |
|
return rsi_df[3:] |
|
|
|
df['RSI'] = get_rsi(df['Close'], 14) |
|
df['SMA20'] = df['Close'].rolling(window=20).mean() |
|
df.drop(['Adj Close'], axis=1, inplace=True) |
|
df = df.dropna() |
|
|
|
return df |
|
|
|
def fin_data(ticker, startdate, enddate): |
|
df=yf.download(ticker,start=startdate,end=enddate, progress=False) |
|
df = process_dataframe(df) |
|
df.reset_index(inplace=True) |
|
df = df.dropna() |
|
df.reset_index(drop=True, inplace=True) |
|
df[['Open', 'High', 'Low', 'Close',"RSI"]] = df[['Open', 'High', 'Low', 'Close',"RSI"]].round(2) |
|
df = df[200:] |
|
df.reset_index(drop=True,inplace=True) |
|
return df |
|
|
|
def eqt(ticker, startdate, enddate, share_qty = 90): |
|
df = fin_data(ticker, startdate, enddate) |
|
entry = False |
|
trading = False |
|
shares_held = 0 |
|
buy_price = 0 |
|
target1 = False |
|
target2 = False |
|
target3 = False |
|
tgt1 = 0 |
|
tgt2 = 0 |
|
tgt3 = 0 |
|
total_profit = 0 |
|
profits = [] |
|
stop_loss = 0 |
|
capital_list = [] |
|
start_date = [] |
|
end_date = [] |
|
|
|
for i in range(1, len(df)-1): |
|
try: |
|
if df.at[i, 'RSI'] > 60 and df.at[i - 1, 'RSI'] < 60 and df.at[i, 'High'] < df.at[i + 1, 'High'] and not entry and not trading: |
|
buy_price = df.at[i, 'High'] |
|
stop_loss = df.at[i, 'Low'] |
|
start_date.append(df.at[i, 'Date']) |
|
capital = buy_price * share_qty |
|
capital_list.append(round(capital, 2)) |
|
shares_held = share_qty |
|
entry = True |
|
trading = True |
|
|
|
if trading and not target1: |
|
if (df.at[i + 1, 'High'] - buy_price) >= 0.02 * buy_price: |
|
stop_loss = buy_price |
|
target1 = True |
|
tgt1 = 0.02 * buy_price * (share_qty / 3) |
|
shares_held -= (share_qty / 3) |
|
total_profit = tgt1 |
|
|
|
if trading and target1 and not target2: |
|
if (df.at[i + 1, 'High'] - buy_price) >= 0.04 * buy_price: |
|
target2 = True |
|
tgt2 = 0.04 * buy_price * (share_qty / 3) |
|
total_profit += tgt2 |
|
shares_held -= (share_qty / 3) |
|
|
|
if trading and target2 and not target3: |
|
if (df.at[i + 1, 'Open'] < df.at[i + 1, 'SMA20'] < df.at[i + 1, 'Close']) or (df.at[i + 1, 'Open'] > df.at[i + 1, 'SMA20'] > df.at[i + 1, 'Close']): |
|
stop_loss = df.at[i + 1, 'Low'] |
|
if df.at[i + 2, 'Low'] < stop_loss: |
|
target3 = True |
|
tgt3 = stop_loss * (share_qty / 3) |
|
shares_held -= (share_qty / 3) |
|
total_profit += tgt3 |
|
|
|
if (df.at[i + 1, 'Low'] < stop_loss and trading): |
|
profit_loss = (shares_held * stop_loss) - (shares_held * buy_price) |
|
total_profit += profit_loss |
|
profits.append(total_profit) |
|
end_date.append(df.at[i, 'Date']) |
|
shares_held = 0 |
|
buy_price = 0 |
|
entry = False |
|
trading = False |
|
target1 = target2 = target3 = False |
|
tgt1 = tgt2 = tgt3 = 0 |
|
total_profit = 0 |
|
|
|
|
|
|
|
|
|
except IndexError: |
|
continue |
|
|
|
print("\n") |
|
print(f"Stock: {ticker} - From {df.at[1, 'Date']} to {df.at[len(df) - 1, 'Date']}") |
|
print(f"Required capital Range equity per trade: {round(capital_list[0],2)} ₹ - {round(capital_list[-1],2)} ₹") |
|
print("Duration Total Trading Profit:", round(sum(profits), 2),"₹") |
|
if profits: |
|
if len(start_date) > len(end_date): |
|
rr = len(end_date) |
|
df = pd.DataFrame({"Start" : start_date[:rr], "End": end_date, "profit" : profits, "Capital" : capital_list[:rr]}) |
|
df['percentage'] = (df['profit'] / df['Capital']) * 100 |
|
df['percentage'] = df['percentage'].apply(lambda x: f"{x:.2f}%" if x >= 0 else f"-{-x:.2f}%") |
|
else: |
|
df = pd.DataFrame({"Start" : start_date, "End": end_date, "profit" : profits, "Capital" : capital_list}) |
|
df['percentage'] = (df['profit'] / df['Capital']) * 100 |
|
df['percentage'] = df['percentage'].apply(lambda x: f"{x:.2f}%" if x >= 0 else f"-{-x:.2f}%") |
|
return df |
|
else: |
|
return 0 |