Upload 2 files
Browse files
stratagy/__pycache__/rsi_stratagy.cpython-38.pyc
ADDED
Binary file (3.82 kB). View file
|
|
stratagy/rsi_stratagy.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yfinance as yf
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
def process_dataframe(df):
|
5 |
+
def get_rsi(close, lookback):
|
6 |
+
ret = close.diff()
|
7 |
+
up = []
|
8 |
+
down = []
|
9 |
+
for i in range(len(ret)):
|
10 |
+
if ret[i] < 0:
|
11 |
+
up.append(0)
|
12 |
+
down.append(ret[i])
|
13 |
+
else:
|
14 |
+
up.append(ret[i])
|
15 |
+
down.append(0)
|
16 |
+
up_series = pd.Series(up)
|
17 |
+
down_series = pd.Series(down).abs()
|
18 |
+
up_ewm = up_series.ewm(com=lookback - 1, adjust=False).mean()
|
19 |
+
down_ewm = down_series.ewm(com=lookback - 1, adjust=False).mean()
|
20 |
+
rs = up_ewm / down_ewm
|
21 |
+
rsi = 100 - (100 / (1 + rs))
|
22 |
+
rsi_df = pd.DataFrame(rsi).rename(columns={0: 'RSI'}).set_index(close.index)
|
23 |
+
rsi_df = rsi_df.dropna()
|
24 |
+
return rsi_df[3:]
|
25 |
+
|
26 |
+
df['RSI'] = get_rsi(df['Close'], 14)
|
27 |
+
df['SMA20'] = df['Close'].rolling(window=20).mean()
|
28 |
+
df.drop(['Adj Close'], axis=1, inplace=True)
|
29 |
+
df = df.dropna()
|
30 |
+
|
31 |
+
return df
|
32 |
+
|
33 |
+
def fin_data(ticker, startdate, enddate):
|
34 |
+
df=yf.download(ticker,start=startdate,end=enddate, progress=False)
|
35 |
+
df = process_dataframe(df)
|
36 |
+
df.reset_index(inplace=True)
|
37 |
+
df = df.dropna()
|
38 |
+
df.reset_index(drop=True, inplace=True)
|
39 |
+
df[['Open', 'High', 'Low', 'Close',"RSI"]] = df[['Open', 'High', 'Low', 'Close',"RSI"]].round(2)
|
40 |
+
df = df[200:]
|
41 |
+
df.reset_index(drop=True,inplace=True)
|
42 |
+
return df
|
43 |
+
|
44 |
+
def eqt(ticker, startdate, enddate, share_qty = 90):
|
45 |
+
df = fin_data(ticker, startdate, enddate)
|
46 |
+
entry = False
|
47 |
+
trading = False
|
48 |
+
shares_held = 0
|
49 |
+
buy_price = 0
|
50 |
+
target1 = False
|
51 |
+
target2 = False
|
52 |
+
target3 = False
|
53 |
+
tgt1 = 0
|
54 |
+
tgt2 = 0
|
55 |
+
tgt3 = 0
|
56 |
+
total_profit = 0
|
57 |
+
profits = []
|
58 |
+
stop_loss = 0
|
59 |
+
capital_list = []
|
60 |
+
start_date = []
|
61 |
+
end_date = []
|
62 |
+
|
63 |
+
for i in range(1, len(df)-1):
|
64 |
+
try:
|
65 |
+
if df.at[i, 'RSI'] > 60 and df.at[i - 1, 'RSI'] < 60 and df.at[i, 'High'] < df.at[i + 1, 'High'] and not entry and not trading:
|
66 |
+
buy_price = df.at[i, 'High']
|
67 |
+
stop_loss = df.at[i, 'Low']
|
68 |
+
start_date.append(df.at[i, 'Date'])
|
69 |
+
capital = buy_price * share_qty
|
70 |
+
capital_list.append(round(capital, 2))
|
71 |
+
shares_held = share_qty
|
72 |
+
entry = True
|
73 |
+
trading = True
|
74 |
+
|
75 |
+
if trading and not target1:
|
76 |
+
if (df.at[i + 1, 'High'] - buy_price) >= 0.02 * buy_price:
|
77 |
+
stop_loss = buy_price
|
78 |
+
target1 = True
|
79 |
+
tgt1 = 0.02 * buy_price * (share_qty / 3)
|
80 |
+
shares_held -= (share_qty / 3)
|
81 |
+
total_profit = tgt1
|
82 |
+
|
83 |
+
if trading and target1 and not target2:
|
84 |
+
if (df.at[i + 1, 'High'] - buy_price) >= 0.04 * buy_price:
|
85 |
+
target2 = True
|
86 |
+
tgt2 = 0.04 * buy_price * (share_qty / 3)
|
87 |
+
total_profit += tgt2
|
88 |
+
shares_held -= (share_qty / 3)
|
89 |
+
|
90 |
+
if trading and target2 and not target3:
|
91 |
+
if (df.at[i + 1, 'Open'] < df.at[i + 1, 'SMA20'] < df.at[i + 1, 'Close']) or (df.at[i + 1, 'Open'] > df.at[i + 1, 'SMA20'] > df.at[i + 1, 'Close']):
|
92 |
+
stop_loss = df.at[i + 1, 'Low']
|
93 |
+
if df.at[i + 2, 'Low'] < stop_loss:
|
94 |
+
target3 = True
|
95 |
+
tgt3 = stop_loss * (share_qty / 3)
|
96 |
+
shares_held -= (share_qty / 3)
|
97 |
+
total_profit += tgt3
|
98 |
+
|
99 |
+
if (df.at[i + 1, 'Low'] < stop_loss and trading):
|
100 |
+
profit_loss = (shares_held * stop_loss) - (shares_held * buy_price)
|
101 |
+
total_profit += profit_loss
|
102 |
+
profits.append(total_profit)
|
103 |
+
end_date.append(df.at[i, 'Date'])
|
104 |
+
shares_held = 0
|
105 |
+
buy_price = 0
|
106 |
+
entry = False
|
107 |
+
trading = False
|
108 |
+
target1 = target2 = target3 = False
|
109 |
+
tgt1 = tgt2 = tgt3 = 0
|
110 |
+
total_profit = 0
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
except IndexError:
|
116 |
+
continue
|
117 |
+
|
118 |
+
print("\n")
|
119 |
+
print(f"Stock: {ticker} - From {df.at[1, 'Date']} to {df.at[len(df) - 1, 'Date']}")
|
120 |
+
print(f"Required capital Range equity per trade: {round(capital_list[0],2)} ₹ - {round(capital_list[-1],2)} ₹")
|
121 |
+
print("Duration Total Trading Profit:", round(sum(profits), 2),"₹")
|
122 |
+
if profits:
|
123 |
+
if len(start_date) > len(end_date):
|
124 |
+
rr = len(end_date)
|
125 |
+
df = pd.DataFrame({"Start" : start_date[:rr], "End": end_date, "profit" : profits, "Capital" : capital_list[:rr]})
|
126 |
+
df['percentage'] = (df['profit'] / df['Capital']) * 100
|
127 |
+
df['percentage'] = df['percentage'].apply(lambda x: f"{x:.2f}%" if x >= 0 else f"-{-x:.2f}%")
|
128 |
+
else:
|
129 |
+
df = pd.DataFrame({"Start" : start_date, "End": end_date, "profit" : profits, "Capital" : capital_list})
|
130 |
+
df['percentage'] = (df['profit'] / df['Capital']) * 100
|
131 |
+
df['percentage'] = df['percentage'].apply(lambda x: f"{x:.2f}%" if x >= 0 else f"-{-x:.2f}%")
|
132 |
+
return df
|
133 |
+
else:
|
134 |
+
return 0
|