|
from typing import Any, Iterator, List, TypeVar |
|
|
|
from .pytorch import IterableDataset |
|
from .utils import PipelineStage |
|
|
|
T = TypeVar('T') |
|
|
|
def add_length_method(obj: Any) -> Any: ... |
|
|
|
class DataPipeline(IterableDataset, PipelineStage): |
|
pipeline: List[Any] |
|
length: int |
|
repetitions: int |
|
nsamples: int |
|
size: int |
|
|
|
def __init__(self, *args: Any, **kwargs: Any) -> None: ... |
|
def close(self) -> None: ... |
|
def invoke(self, f: Any, *args: Any, **kwargs: Any) -> Any: ... |
|
def iterator1(self) -> Iterator[Any]: ... |
|
def iterator(self) -> Iterator[Any]: ... |
|
def __iter__(self) -> Iterator[Any]: ... |
|
def stage(self, i: int) -> Any: ... |
|
def append(self, f: Any) -> None: ... |
|
def compose(self, *args: Any) -> 'DataPipeline': ... |
|
def with_length(self, n: int, silent: bool = False) -> 'DataPipeline': ... |
|
def with_epoch(self, nsamples: int = -1, nbatches: int = -1) -> 'DataPipeline': ... |
|
def repeat(self, nepochs: int = -1, nbatches: int = -1) -> 'DataPipeline': ... |
|
|