jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
from typing import Dict, Optional, Tuple
import cv2
import numpy as np
from tqdm.auto import tqdm
from ultralytics.engine.results import Results
from ultralytics.models.yolo.segment import SegmentationPredictor
from ultralytics.utils.ops import scale_image
import wandb
from wandb.integration.ultralytics.bbox_utils import (
get_ground_truth_bbox_annotations,
get_mean_confidence_map,
)
def instance_mask_to_semantic_mask(instance_mask, class_indices):
height, width, num_instances = instance_mask.shape
semantic_mask = np.zeros((height, width), dtype=np.uint8)
for i in range(num_instances):
instance_map = instance_mask[:, :, i]
class_index = class_indices[i]
semantic_mask[instance_map == 1] = class_index
return semantic_mask
def get_boxes_and_masks(result: Results) -> Tuple[Dict, Dict, Dict]:
boxes = result.boxes.xywh.long().numpy()
classes = result.boxes.cls.long().numpy()
confidence = result.boxes.conf.numpy()
class_id_to_label = {int(k): str(v) for k, v in result.names.items()}
class_id_to_label.update({len(result.names.items()): "background"})
mean_confidence_map = get_mean_confidence_map(
classes, confidence, class_id_to_label
)
masks = None
if result.masks is not None:
scaled_instance_mask = scale_image(
np.transpose(result.masks.data.numpy(), (1, 2, 0)),
result.orig_img[:, :, ::-1].shape,
)
scaled_semantic_mask = instance_mask_to_semantic_mask(
scaled_instance_mask, classes.tolist()
)
scaled_semantic_mask[scaled_semantic_mask == 0] = len(result.names.items())
masks = {
"predictions": {
"mask_data": scaled_semantic_mask,
"class_labels": class_id_to_label,
}
}
box_data, total_confidence = [], 0.0
for idx in range(len(boxes)):
box_data.append(
{
"position": {
"middle": [int(boxes[idx][0]), int(boxes[idx][1])],
"width": int(boxes[idx][2]),
"height": int(boxes[idx][3]),
},
"domain": "pixel",
"class_id": int(classes[idx]),
"box_caption": class_id_to_label[int(classes[idx])],
"scores": {"confidence": float(confidence[idx])},
}
)
total_confidence += float(confidence[idx])
boxes = {
"predictions": {
"box_data": box_data,
"class_labels": class_id_to_label,
},
}
return boxes, masks, mean_confidence_map
def plot_mask_predictions(
result: Results, model_name: str, table: Optional[wandb.Table] = None
) -> Tuple[wandb.Image, Dict, Dict, Dict]:
result = result.to("cpu")
boxes, masks, mean_confidence_map = get_boxes_and_masks(result)
image = wandb.Image(result.orig_img[:, :, ::-1], boxes=boxes, masks=masks)
if table is not None:
table.add_data(
model_name,
image,
len(boxes["predictions"]["box_data"]),
mean_confidence_map,
result.speed,
)
return table
return image, masks, boxes["predictions"], mean_confidence_map
def structure_prompts_and_image(image: np.array, prompt: Dict) -> Dict:
wb_box_data = []
if prompt["bboxes"] is not None:
wb_box_data.append(
{
"position": {
"middle": [prompt["bboxes"][0], prompt["bboxes"][1]],
"width": prompt["bboxes"][2],
"height": prompt["bboxes"][3],
},
"domain": "pixel",
"class_id": 1,
"box_caption": "Prompt-Box",
}
)
if prompt["points"] is not None:
image = image.copy().astype(np.uint8)
image = cv2.circle(
image, tuple(prompt["points"]), 5, (0, 255, 0), -1, lineType=cv2.LINE_AA
)
wb_box_data = {
"prompts": {
"box_data": wb_box_data,
"class_labels": {1: "Prompt-Box"},
}
}
return image, wb_box_data
def plot_sam_predictions(
result: Results, prompt: Dict, table: wandb.Table
) -> wandb.Table:
result = result.to("cpu")
image = result.orig_img[:, :, ::-1]
image, wb_box_data = structure_prompts_and_image(image, prompt)
image = wandb.Image(
image,
boxes=wb_box_data,
masks={
"predictions": {
"mask_data": np.squeeze(result.masks.data.cpu().numpy().astype(int)),
"class_labels": {0: "Background", 1: "Prediction"},
}
},
)
table.add_data(image)
return table
def plot_segmentation_validation_results(
dataloader,
class_label_map,
model_name: str,
predictor: SegmentationPredictor,
table: wandb.Table,
max_validation_batches: int,
epoch: Optional[int] = None,
):
data_idx = 0
num_dataloader_batches = len(dataloader.dataset) // dataloader.batch_size
max_validation_batches = min(max_validation_batches, num_dataloader_batches)
for batch_idx, batch in enumerate(dataloader):
prediction_results = predictor(batch["im_file"])
progress_bar_result_iterable = tqdm(
enumerate(prediction_results),
total=len(prediction_results),
desc=f"Generating Visualizations for batch-{batch_idx + 1}/{max_validation_batches}",
)
for img_idx, prediction_result in progress_bar_result_iterable:
prediction_result = prediction_result.to("cpu")
(
_,
prediction_mask_data,
prediction_box_data,
mean_confidence_map,
) = plot_mask_predictions(prediction_result, model_name)
try:
ground_truth_data = get_ground_truth_bbox_annotations(
img_idx, batch["im_file"][img_idx], batch, class_label_map
)
wandb_image = wandb.Image(
batch["im_file"][img_idx],
boxes={
"ground-truth": {
"box_data": ground_truth_data,
"class_labels": class_label_map,
},
"predictions": prediction_box_data,
},
masks=prediction_mask_data,
)
table_rows = [
data_idx,
batch_idx,
wandb_image,
mean_confidence_map,
prediction_result.speed,
]
table_rows = [epoch] + table_rows if epoch is not None else table_rows
table_rows = [model_name] + table_rows
table.add_data(*table_rows)
data_idx += 1
except TypeError:
pass
if batch_idx + 1 == max_validation_batches:
break
return table