|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from dataclasses import dataclass, field |
|
|
|
from ..trainer.utils import OnPolicyConfig |
|
|
|
|
|
@dataclass |
|
class RLOOConfig(OnPolicyConfig): |
|
r""" |
|
Configuration class for the [`RLOOTrainer`]. |
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
command line. |
|
|
|
Parameters: |
|
exp_name (`str`, *optional*, defaults to `os.path.basename(__file__)[: -len(".py")]`): |
|
Name of this experiment. |
|
reward_model_path (`str`, *optional*, defaults to `"EleutherAI/pythia-160m"`): |
|
Path to the reward model. |
|
num_ppo_epochs (`int`, *optional*, defaults to `4`): |
|
Number of epochs to train. |
|
whiten_rewards (`bool`, *optional*, defaults to `False`): |
|
Whether to whiten the rewards. |
|
kl_coef (`float`, *optional*, defaults to `0.05`): |
|
KL coefficient. |
|
cliprange (`float`, *optional*, defaults to `0.2`): |
|
Clip range. |
|
rloo_k (`int`, *optional*, defaults to `2`): |
|
REINFORCE Leave-One-Out (RLOO) number of online samples per prompt. |
|
normalize_reward (`bool`, *optional*, defaults to `False`): |
|
Whether to normalize rewards. |
|
reward_clip_range (`float`, *optional*, defaults to `10.0`): |
|
Clip range for rewards. |
|
normalize_advantage (`bool`, *optional*, defaults to `False`): |
|
Whether to normalize advantages. |
|
token_level_kl (`bool`, *optional*, defaults to `True`): |
|
Whether to use token-level KL penalty or sequence-level KL penalty. |
|
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`): |
|
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation, |
|
improving generation speed. However, disabling this option allows training models that exceed the VRAM |
|
capacity of a single GPU, albeit at the cost of slower generation. |
|
""" |
|
|
|
exp_name: str = field( |
|
default=os.path.basename(__file__)[:-3], |
|
metadata={"help": "Name of this experiment."}, |
|
) |
|
reward_model_path: str = field( |
|
default="EleutherAI/pythia-160m", |
|
metadata={"help": "Path to the reward model."}, |
|
) |
|
num_ppo_epochs: int = field( |
|
default=4, |
|
metadata={"help": "Number of epochs to train."}, |
|
) |
|
whiten_rewards: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to whiten the rewards."}, |
|
) |
|
kl_coef: float = field( |
|
default=0.05, |
|
metadata={"help": "KL coefficient."}, |
|
) |
|
cliprange: float = field( |
|
default=0.2, |
|
metadata={"help": "Clip range."}, |
|
) |
|
rloo_k: int = field( |
|
default=2, |
|
metadata={"help": "REINFORCE Leave-One-Out (RLOO) number of online samples per prompt."}, |
|
) |
|
normalize_reward: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to normalize rewards"}, |
|
) |
|
reward_clip_range: float = field( |
|
default=10.0, |
|
metadata={"help": "Clip range for rewards"}, |
|
) |
|
normalize_advantage: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to normalize advantages"}, |
|
) |
|
token_level_kl: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to use token-level KL penalty or sequence-level KL penalty"}, |
|
) |
|
ds3_gather_for_generation: bool = field( |
|
default=True, |
|
metadata={ |
|
"help": "This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for " |
|
"generation, improving generation speed. However, disabling this option allows training models that " |
|
"exceed the VRAM capacity of a single GPU, albeit at the cost of slower generation." |
|
}, |
|
) |
|
|