|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
from transformers import TrainingArguments |
|
|
|
|
|
@dataclass |
|
class RewardConfig(TrainingArguments): |
|
r""" |
|
Configuration class for the [`RewardTrainer`]. |
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
command line. |
|
|
|
Parameters: |
|
max_length (`int` or `None`, *optional*, defaults to `1024`): |
|
Maximum length of the sequences (prompt + completion) in the batch, filters out entries that exceed the |
|
limit. This argument is required if you want to use the default data collator. |
|
disable_dropout (`bool`, *optional*, defaults to `True`): |
|
Whether to disable dropout in the model. |
|
dataset_num_proc (`int`, *optional*, defaults to `None`): |
|
Number of processes to use for processing the dataset. |
|
center_rewards_coefficient (`float`, *optional*, defaults to `None`): |
|
Coefficient to incentivize the reward model to output mean-zero rewards (proposed by |
|
https://huggingface.co/papers/2312.09244, Eq. 2). Recommended value: `0.01`. |
|
remove_unused_columns (`bool`, *optional*, defaults to `False`): |
|
Whether to remove the columns that are not used by the model's forward pass. Can be `True` only if |
|
the dataset is pretokenized. |
|
""" |
|
|
|
max_length: Optional[int] = field( |
|
default=1024, |
|
metadata={ |
|
"help": "Maximum length of the sequences (prompt + completion) in the batch, filters out entries that " |
|
"exceed the limit. This argument is required if you want to use the default data collator." |
|
}, |
|
) |
|
disable_dropout: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to disable dropout in the model and reference model."}, |
|
) |
|
dataset_num_proc: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "Number of processes to use for processing the dataset."}, |
|
) |
|
center_rewards_coefficient: Optional[float] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Coefficient to incentivize the reward model to output mean-zero rewards (proposed by " |
|
"https://huggingface.co/papers/2312.09244, Eq. 2). Recommended value: `0.01`." |
|
}, |
|
) |
|
remove_unused_columns: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to remove the columns that are not used by the model's forward pass. Can be `True` only " |
|
"if the dataset is pretokenized." |
|
}, |
|
) |
|
|