|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import os |
|
import textwrap |
|
import warnings |
|
from itertools import chain |
|
from typing import Callable, Optional, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from accelerate import PartialState |
|
from datasets import Dataset, features |
|
from transformers import ( |
|
BaseImageProcessor, |
|
DataCollator, |
|
DataCollatorForTokenClassification, |
|
FeatureExtractionMixin, |
|
PreTrainedModel, |
|
PreTrainedTokenizerBase, |
|
ProcessorMixin, |
|
Trainer, |
|
is_wandb_available, |
|
) |
|
from transformers.trainer_callback import TrainerCallback |
|
from transformers.trainer_utils import EvalPrediction |
|
from transformers.utils import is_peft_available |
|
|
|
from .prm_config import PRMConfig |
|
from .utils import compute_accuracy, disable_dropout_in_model, generate_model_card |
|
|
|
|
|
if is_peft_available(): |
|
from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training |
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
class PRMTrainer(Trainer): |
|
""" |
|
Initialize PRMTrainer. |
|
|
|
Args: |
|
model (`transformers.PreTrainedModel`): |
|
The model to train, preferably an `AutoModelForTokenClassification`. |
|
args (`PRMConfig`): |
|
The arguments to use for training. |
|
data_collator (`transformers.DataCollator`): |
|
The data collator to use for training. If None is specified, the default data collator (`DataCollatorForTokenClassification`) will be used |
|
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. |
|
train_dataset (`datasets.Dataset`): |
|
The dataset to use for training. |
|
eval_dataset (`datasets.Dataset`): |
|
The dataset to use for evaluation. |
|
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): |
|
Processing class used to process the data. If provided, will be used to automatically process the inputs |
|
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or |
|
reuse the fine-tuned model. |
|
model_init (`Callable[[], transformers.PreTrainedModel]`): |
|
The model initializer to use for training. If None is specified, the default model initializer will be used. |
|
compute_metrics (`Callable[[transformers.EvalPrediction], dict]`, *optional* defaults to `compute_accuracy`): |
|
The metrics to use for evaluation. If no metrics are specified, the default metric (`compute_accuracy`) will be used. |
|
callbacks (`list[transformers.TrainerCallback]`): |
|
The callbacks to use for training. |
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): |
|
The optimizer and scheduler to use for training. |
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): |
|
The function to use to preprocess the logits before computing the metrics. |
|
peft_config (`dict`, defaults to `None`): |
|
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model. |
|
""" |
|
|
|
_tag_names = ["trl", "prm"] |
|
|
|
def __init__( |
|
self, |
|
model: Optional[Union[PreTrainedModel, nn.Module]] = None, |
|
args: Optional[PRMConfig] = None, |
|
data_collator: Optional[DataCollator] = None, |
|
train_dataset: Optional[Dataset] = None, |
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, |
|
processing_class: Optional[ |
|
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] |
|
] = None, |
|
model_init: Optional[Callable[[], PreTrainedModel]] = None, |
|
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, |
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = ( |
|
None, |
|
None, |
|
), |
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
peft_config: Optional[dict] = None, |
|
): |
|
if not is_peft_available() and peft_config is not None: |
|
raise ValueError( |
|
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" |
|
) |
|
elif is_peft_available() and peft_config is not None: |
|
if not isinstance(model, PeftModel): |
|
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_quantized", False): |
|
_supports_gc_kwargs = "gradient_checkpointing_kwargs" in list( |
|
inspect.signature(prepare_model_for_kbit_training).parameters |
|
) |
|
|
|
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} |
|
|
|
if not _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None: |
|
warnings.warn( |
|
"You passed `gradient_checkpointing_kwargs` in the trainer's kwargs, but your peft version does not support it. " |
|
"please update to the latest version of peft to use `gradient_checkpointing_kwargs`." |
|
) |
|
elif _supports_gc_kwargs and args.gradient_checkpointing_kwargs is not None: |
|
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs |
|
|
|
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) |
|
|
|
model = get_peft_model(model, peft_config) |
|
|
|
|
|
if args.disable_dropout: |
|
disable_dropout_in_model(model) |
|
|
|
if compute_metrics is None: |
|
compute_metrics = compute_accuracy |
|
|
|
if data_collator is None: |
|
if processing_class is None: |
|
raise ValueError( |
|
"A processing_class must be specified when using the default DataCollatorForTokenClassification" |
|
) |
|
data_collator = DataCollatorForTokenClassification(processing_class, max_length=args.max_length) |
|
|
|
if "input_ids" not in train_dataset.column_names: |
|
with PartialState().main_process_first(): |
|
fn_kwargs = { |
|
"tokenizer": processing_class, |
|
"step_separator": args.step_separator, |
|
"max_length": args.max_length, |
|
"max_prompt_length": args.max_prompt_length, |
|
"max_completion_length": args.max_completion_length, |
|
"train_on_last_step_only": args.train_on_last_step_only, |
|
} |
|
train_fn_kwargs = {**fn_kwargs, "is_eval": False} |
|
train_dataset = train_dataset.map( |
|
self.tokenize_row, |
|
fn_kwargs=train_fn_kwargs, |
|
num_proc=args.dataset_num_proc, |
|
remove_columns=train_dataset.features, |
|
desc="Tokenizing train dataset", |
|
features=features.Features( |
|
{ |
|
"labels": features.Sequence(features.Value("int64")), |
|
"input_ids": features.Sequence(features.Value("int64")), |
|
} |
|
), |
|
) |
|
|
|
eval_fn_kwargs = {**fn_kwargs, "is_eval": True} |
|
if eval_dataset is not None: |
|
eval_dataset = eval_dataset.map( |
|
self.tokenize_row, |
|
fn_kwargs=eval_fn_kwargs, |
|
num_proc=args.dataset_num_proc, |
|
remove_columns=eval_dataset.features, |
|
desc="Tokenizing eval dataset", |
|
features=features.Features( |
|
{ |
|
"labels": features.Sequence(features.Value("int64")), |
|
"input_ids": features.Sequence(features.Value("int64")), |
|
} |
|
), |
|
) |
|
|
|
super().__init__( |
|
model=model, |
|
args=args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
processing_class=processing_class, |
|
model_init=model_init, |
|
compute_metrics=compute_metrics, |
|
callbacks=callbacks, |
|
optimizers=optimizers, |
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
) |
|
|
|
|
|
if hasattr(self.model, "add_model_tags"): |
|
self.model.add_model_tags(self._tag_names) |
|
|
|
@staticmethod |
|
def tokenize_row( |
|
features, |
|
tokenizer, |
|
step_separator, |
|
max_length, |
|
max_prompt_length, |
|
max_completion_length, |
|
train_on_last_step_only, |
|
is_eval, |
|
): |
|
r""" |
|
Tokenize a row of the dataset. |
|
|
|
Args: |
|
features (`dict[str, str]`): |
|
Row of the dataset, should contain the keys `"prompt"`, `"completions"`, and `"labels"`. |
|
tokenizer (`PreTrainedTokenizerBase`): |
|
Tokenizer used to process the data. |
|
step_separator (`str`): |
|
Separator between steps in the completion. |
|
max_length (`int` or `None`): |
|
Maximum length of the sequences (prompt + completion). If `None`, the sequences are not truncated. |
|
max_prompt_length (`int` or `None`): |
|
Maximum length of the prompt. If `None`, the prompt is not truncated. |
|
max_completion_length (`int` or `None`): |
|
Maximum length of the completion sequences. If `None`, the completion sequences are not truncated. |
|
train_on_last_step_only (`bool`): |
|
Whether to train only on the last step. If `True`, the labels are `-100` for all tokens except the last |
|
token of the completion. |
|
is_eval (`bool`): |
|
Whether the function is used to tokenize samples from a training or an evaluation dataset. Used only if `train_on_last_step_only` is set to `True`. |
|
|
|
Returns: |
|
`dict[str, list[int]]`: |
|
Tokenized sequences with the keys `"input_ids"`, and `"labels". |
|
|
|
Example: |
|
```python |
|
>>> from transformers import AutoTokenizer |
|
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B") |
|
>>> features = {"prompt": "Which number is larger, 9.8 or 9.11?", |
|
... "completions": ["11 is greater than 8.", |
|
... "Hence, 9.11 > 9.8."], |
|
... "labels": [True, False]} |
|
>>> PRMTrainer.tokenize_row(features, tokenizer, "\n", max_completion_length=None, train_on_last_step_only=False, is_eval=False) |
|
{'input_ids': [23085, 1372, 374, 8131, 11, 220, 24, 13, 23, 476, 220, 24, 13, 16, 16, 30, 16, 16, 374, 7046, 1091, 220, 23, 13, 198, 39, 763, 11, 220, 24, 13, 16, 16, 861, 220, 24, 13, 23, 13, 198], |
|
'labels': [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0]} |
|
``` |
|
""" |
|
|
|
prompt_ids = tokenizer(features["prompt"], add_special_tokens=False)["input_ids"] |
|
completions_ids = [ |
|
tokenizer(completion, add_special_tokens=False)["input_ids"] for completion in features["completions"] |
|
] |
|
if train_on_last_step_only and not is_eval: |
|
labels = [-100] * (len(features["labels"]) - 1) + [int(features["labels"][-1])] |
|
else: |
|
labels = [int(label) for label in features["labels"]] |
|
|
|
|
|
separator_ids = tokenizer.encode(step_separator, add_special_tokens=False) |
|
completions_ids = [completion + separator_ids for completion in completions_ids] |
|
|
|
|
|
labels = [[-100] * (len(completion) - 1) + [label] for completion, label in zip(completions_ids, labels)] |
|
|
|
|
|
completion_ids = list(chain(*completions_ids)) |
|
labels = list(chain(*labels)) |
|
|
|
if tokenizer.bos_token_id is not None: |
|
prompt_ids = [tokenizer.bos_token_id] + prompt_ids |
|
|
|
|
|
if max_prompt_length is not None: |
|
prompt_ids = prompt_ids[-max_prompt_length:] |
|
if max_completion_length is not None: |
|
completion_ids = completion_ids[:max_completion_length] |
|
labels = labels[:max_completion_length] |
|
|
|
input_ids = prompt_ids + completion_ids |
|
labels = [-100] * len(prompt_ids) + labels |
|
|
|
if max_length is not None: |
|
input_ids = input_ids[:max_length] |
|
labels = labels[:max_length] |
|
|
|
return {"input_ids": input_ids, "labels": labels} |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
tags = tags or [] |
|
if isinstance(tags, str): |
|
tags = [tags] |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.append("unsloth") |
|
|
|
citation = textwrap.dedent("""\ |
|
@article{uesato2022solving, |
|
title = {{Solving Math Word Problems With Process- and Outcome-Based Feedback}}, |
|
author = {Uesato, Jonathan and Kushman, Nate and Kumar, Ramana and Song, Francis and Siegel, Noah and Wang, Lisa and Creswell, Antonia and Irving, Geoffrey and Higgins, Irina}, |
|
year = 2022, |
|
journal = {arXiv preprint arXiv:2211.14275} |
|
}""") |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=tags, |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
trainer_name="PRM", |
|
trainer_citation=citation, |
|
paper_title="Solving math word problems with process-and outcome-based feedback", |
|
) |
|
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
|