|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import os |
|
import random |
|
import textwrap |
|
import warnings |
|
from collections import defaultdict |
|
from contextlib import nullcontext |
|
from copy import deepcopy |
|
from typing import Any, Callable, Literal, Optional, Union |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
import torch.amp as amp |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import transformers |
|
from accelerate import PartialState |
|
from accelerate.utils import is_deepspeed_available |
|
from datasets import Dataset |
|
from packaging import version |
|
from torch.utils.data import DataLoader |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
BaseImageProcessor, |
|
DataCollator, |
|
FeatureExtractionMixin, |
|
PreTrainedModel, |
|
PreTrainedTokenizerBase, |
|
ProcessorMixin, |
|
Trainer, |
|
is_comet_available, |
|
is_torch_xla_available, |
|
is_wandb_available, |
|
) |
|
from transformers.trainer_callback import TrainerCallback |
|
from transformers.trainer_utils import EvalLoopOutput |
|
from transformers.utils import is_peft_available, is_torch_fx_proxy |
|
|
|
from ..data_utils import maybe_apply_chat_template, maybe_extract_prompt |
|
from ..models import PreTrainedModelWrapper |
|
from .orpo_config import ORPOConfig |
|
from .utils import ( |
|
DPODataCollatorWithPadding, |
|
add_bos_token_if_needed, |
|
add_eos_token_if_needed, |
|
disable_dropout_in_model, |
|
generate_model_card, |
|
get_comet_experiment_url, |
|
log_table_to_comet_experiment, |
|
pad_to_length, |
|
peft_module_casting_to_bf16, |
|
selective_log_softmax, |
|
) |
|
|
|
|
|
if is_peft_available(): |
|
from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training |
|
|
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
if is_deepspeed_available(): |
|
import deepspeed |
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
|
|
class ORPOTrainer(Trainer): |
|
r""" |
|
Initialize ORPOTrainer. |
|
|
|
Args: |
|
model (`transformers.PreTrainedModel`): |
|
The model to train, preferably an `AutoModelForSequenceClassification`. |
|
args (`ORPOConfig`): |
|
The ORPO config arguments to use for training. |
|
data_collator (`transformers.DataCollator`): |
|
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used |
|
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. |
|
train_dataset (`datasets.Dataset`): |
|
The dataset to use for training. |
|
eval_dataset (`datasets.Dataset`): |
|
The dataset to use for evaluation. |
|
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): |
|
Processing class used to process the data. If provided, will be used to automatically process the inputs |
|
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or |
|
reuse the fine-tuned model. |
|
model_init (`Callable[[], transformers.PreTrainedModel]`): |
|
The model initializer to use for training. If None is specified, the default model initializer will be used. |
|
callbacks (`list[transformers.TrainerCallback]`): |
|
The callbacks to use for training. |
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): |
|
The optimizer and scheduler to use for training. |
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): |
|
The function to use to preprocess the logits before computing the metrics. |
|
peft_config (`dict`, defaults to `None`): |
|
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model. |
|
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): |
|
The function to use to compute the metrics. Must take a `EvalPrediction` and return |
|
a dictionary string to metric values. |
|
""" |
|
|
|
_tag_names = ["trl", "orpo"] |
|
|
|
def __init__( |
|
self, |
|
model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, |
|
args: Optional[ORPOConfig] = None, |
|
data_collator: Optional[DataCollator] = None, |
|
train_dataset: Optional[Dataset] = None, |
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, |
|
processing_class: Optional[ |
|
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] |
|
] = None, |
|
model_init: Optional[Callable[[], PreTrainedModel]] = None, |
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), |
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
peft_config: Optional[dict] = None, |
|
compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None, |
|
): |
|
if args.model_init_kwargs is None: |
|
model_init_kwargs = {} |
|
elif not isinstance(model, str): |
|
raise ValueError("You passed model_kwargs to the ORPOTrainer. But your model is already instantiated.") |
|
else: |
|
model_init_kwargs = args.model_init_kwargs |
|
torch_dtype = model_init_kwargs.get("torch_dtype") |
|
if torch_dtype is not None: |
|
|
|
if isinstance(torch_dtype, str) and torch_dtype != "auto": |
|
torch_dtype = getattr(torch, torch_dtype) |
|
if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): |
|
raise ValueError( |
|
f"Invalid `torch_dtype` passed to the ORPOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." |
|
) |
|
model_init_kwargs["torch_dtype"] = torch_dtype |
|
|
|
if isinstance(model, str): |
|
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) |
|
|
|
|
|
|
|
self._peft_has_been_casted_to_bf16 = False |
|
|
|
if not is_peft_available() and peft_config is not None: |
|
raise ValueError( |
|
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it to use the PEFT models" |
|
) |
|
elif is_peft_available() and peft_config is not None: |
|
|
|
if isinstance(model, PeftModel): |
|
model = model.merge_and_unload() |
|
|
|
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): |
|
_support_gc_kwargs = hasattr( |
|
args, "gradient_checkpointing_kwargs" |
|
) and "gradient_checkpointing_kwargs" in list( |
|
inspect.signature(prepare_model_for_kbit_training).parameters |
|
) |
|
|
|
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} |
|
|
|
if _support_gc_kwargs: |
|
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs |
|
|
|
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) |
|
elif getattr(args, "gradient_checkpointing", False): |
|
|
|
if hasattr(model, "enable_input_require_grads"): |
|
model.enable_input_require_grads() |
|
else: |
|
|
|
def make_inputs_require_grad(module, input, output): |
|
output.requires_grad_(True) |
|
|
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
|
|
model = get_peft_model(model, peft_config) |
|
if args.bf16 and getattr(model, "is_loaded_in_4bit", False): |
|
peft_module_casting_to_bf16(model) |
|
|
|
self._peft_has_been_casted_to_bf16 = True |
|
|
|
|
|
|
|
|
|
elif getattr(args, "gradient_checkpointing", False): |
|
|
|
if hasattr(model, "enable_input_require_grads"): |
|
model.enable_input_require_grads() |
|
else: |
|
|
|
def make_inputs_require_grad(module, input, output): |
|
output.requires_grad_(True) |
|
|
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
if args.generate_during_eval and not (is_wandb_available() or is_comet_available()): |
|
raise ValueError( |
|
"`generate_during_eval=True` requires Weights and Biases or Comet to be installed." |
|
" Please install `wandb` or `comet-ml` to resolve." |
|
) |
|
|
|
if model is not None: |
|
self.is_encoder_decoder = model.config.is_encoder_decoder |
|
elif args.is_encoder_decoder is None: |
|
raise ValueError("When no model is provided, you need to pass the parameter is_encoder_decoder.") |
|
else: |
|
self.is_encoder_decoder = args.is_encoder_decoder |
|
|
|
if self.is_encoder_decoder: |
|
self.decoder_start_token_id = model.config.decoder_start_token_id |
|
self.pad_token_id = model.config.pad_token_id |
|
|
|
if processing_class is None: |
|
raise ValueError("processing_class must be specified to tokenize a ORPO dataset.") |
|
if args.max_length is None: |
|
warnings.warn( |
|
"`max_length` is not set in the ORPOConfig's init" |
|
" it will default to `512` by default, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
max_length = 512 |
|
else: |
|
max_length = args.max_length |
|
if args.max_prompt_length is None: |
|
warnings.warn( |
|
"`max_prompt_length` is not set in the ORPOConfig's init" |
|
" it will default to `128` by default, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
max_prompt_length = 128 |
|
else: |
|
max_prompt_length = args.max_prompt_length |
|
|
|
if args.max_completion_length is None and self.is_encoder_decoder: |
|
warnings.warn( |
|
"When using an encoder decoder architecture, you should set `max_completion_length` in the ORPOConfig's init" |
|
" it will default to `128` by default, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
self.max_completion_length = 128 |
|
else: |
|
self.max_completion_length = args.max_completion_length |
|
|
|
if data_collator is None: |
|
data_collator = DPODataCollatorWithPadding( |
|
pad_token_id=processing_class.pad_token_id, |
|
label_pad_token_id=args.label_pad_token_id, |
|
is_encoder_decoder=self.is_encoder_decoder, |
|
) |
|
|
|
if args.remove_unused_columns: |
|
args.remove_unused_columns = False |
|
|
|
warnings.warn( |
|
"When using DPODataCollatorWithPadding, you should set `remove_unused_columns=False` in your TrainingArguments" |
|
" we have set it for you, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
|
|
self.use_dpo_data_collator = True |
|
else: |
|
self.use_dpo_data_collator = False |
|
|
|
|
|
if args.disable_dropout: |
|
disable_dropout_in_model(model) |
|
|
|
self.max_length = max_length |
|
self.generate_during_eval = args.generate_during_eval |
|
self.label_pad_token_id = args.label_pad_token_id |
|
self.padding_value = args.padding_value if args.padding_value is not None else processing_class.pad_token_id |
|
self.max_prompt_length = max_prompt_length |
|
self.truncation_mode = args.truncation_mode |
|
self.processing_class = processing_class |
|
|
|
self.beta = args.beta |
|
self.aux_loss_enabled = getattr(model.config, "output_router_logits", False) |
|
self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0) |
|
if self.aux_loss_enabled and self.aux_loss_coef == 0.0: |
|
warnings.warn( |
|
"You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to " |
|
"`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value " |
|
"greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary " |
|
"loss.", |
|
UserWarning, |
|
) |
|
|
|
self._stored_metrics = defaultdict(lambda: defaultdict(list)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.warnings_issued["estimate_tokens"] = True |
|
|
|
|
|
|
|
with PartialState().main_process_first(): |
|
|
|
train_dataset = train_dataset.map(maybe_extract_prompt, num_proc=args.dataset_num_proc) |
|
train_dataset = train_dataset.map( |
|
maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class}, num_proc=args.dataset_num_proc |
|
) |
|
train_dataset = train_dataset.map(self.tokenize_row, num_proc=args.dataset_num_proc) |
|
if eval_dataset is not None: |
|
eval_dataset = eval_dataset.map(maybe_extract_prompt, num_proc=args.dataset_num_proc) |
|
eval_dataset = eval_dataset.map( |
|
maybe_apply_chat_template, |
|
fn_kwargs={"tokenizer": processing_class}, |
|
num_proc=args.dataset_num_proc, |
|
) |
|
eval_dataset = eval_dataset.map(self.tokenize_row, num_proc=args.dataset_num_proc) |
|
|
|
super().__init__( |
|
model=model, |
|
args=args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
processing_class=processing_class, |
|
model_init=model_init, |
|
compute_metrics=compute_metrics, |
|
callbacks=callbacks, |
|
optimizers=optimizers, |
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
) |
|
|
|
|
|
if hasattr(self.model, "add_model_tags"): |
|
self.model.add_model_tags(self._tag_names) |
|
|
|
if not hasattr(self, "accelerator"): |
|
raise AttributeError( |
|
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." |
|
) |
|
|
|
def _prepare_deepspeed(self, model: PreTrainedModelWrapper): |
|
|
|
deepspeed_plugin = self.accelerator.state.deepspeed_plugin |
|
config_kwargs = deepcopy(deepspeed_plugin.deepspeed_config) |
|
|
|
if model is not None: |
|
if hasattr(model, "config"): |
|
hidden_size = ( |
|
max(model.config.hidden_sizes) |
|
if getattr(model.config, "hidden_sizes", None) |
|
else getattr(model.config, "hidden_size", None) |
|
) |
|
if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3: |
|
|
|
|
|
config_kwargs.update( |
|
{ |
|
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size, |
|
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size, |
|
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size, |
|
} |
|
) |
|
|
|
|
|
|
|
if config_kwargs["zero_optimization"]["stage"] != 3: |
|
config_kwargs["zero_optimization"]["stage"] = 0 |
|
model, *_ = deepspeed.initialize(model=model, config=config_kwargs) |
|
model.eval() |
|
return model |
|
|
|
def build_tokenized_answer(self, prompt, answer): |
|
""" |
|
Llama tokenizer does satisfy `enc(a + b) = enc(a) + enc(b)`. |
|
It does ensure `enc(a + b) = enc(a) + enc(a + b)[len(enc(a)):]`. |
|
Reference: |
|
https://github.com/EleutherAI/lm-evaluation-harness/pull/531#issuecomment-1595586257 |
|
""" |
|
|
|
full_tokenized = self.processing_class(prompt + answer, add_special_tokens=False) |
|
prompt_input_ids = self.processing_class(prompt, add_special_tokens=False)["input_ids"] |
|
|
|
answer_input_ids = full_tokenized["input_ids"][len(prompt_input_ids) :] |
|
answer_attention_mask = full_tokenized["attention_mask"][len(prompt_input_ids) :] |
|
|
|
|
|
full_concat_input_ids = np.concatenate([prompt_input_ids, answer_input_ids]) |
|
|
|
|
|
full_input_ids = np.array(full_tokenized["input_ids"]) |
|
|
|
if len(full_input_ids) != len(full_concat_input_ids): |
|
raise ValueError("Prompt input ids and answer input ids should have the same length.") |
|
|
|
|
|
|
|
|
|
|
|
response_token_ids_start_idx = len(prompt_input_ids) |
|
|
|
|
|
|
|
if prompt_input_ids != full_tokenized["input_ids"][:response_token_ids_start_idx]: |
|
response_token_ids_start_idx -= 1 |
|
|
|
prompt_input_ids = full_tokenized["input_ids"][:response_token_ids_start_idx] |
|
prompt_attention_mask = full_tokenized["attention_mask"][:response_token_ids_start_idx] |
|
|
|
if len(prompt_input_ids) != len(prompt_attention_mask): |
|
raise ValueError("Prompt input ids and attention mask should have the same length.") |
|
|
|
answer_input_ids = full_tokenized["input_ids"][response_token_ids_start_idx:] |
|
answer_attention_mask = full_tokenized["attention_mask"][response_token_ids_start_idx:] |
|
|
|
return dict( |
|
prompt_input_ids=prompt_input_ids, |
|
prompt_attention_mask=prompt_attention_mask, |
|
input_ids=answer_input_ids, |
|
attention_mask=answer_attention_mask, |
|
) |
|
|
|
def tokenize_row(self, feature, model: Optional[Union[PreTrainedModel, nn.Module]] = None) -> dict: |
|
"""Tokenize a single row from a ORPO specific dataset. |
|
|
|
At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation |
|
in case the prompt + chosen or prompt + rejected responses is/are too long. First |
|
we truncate the prompt; if we're still too long, we truncate the chosen/rejected. |
|
|
|
We also create the labels for the chosen/rejected responses, which are of length equal to |
|
the sum of the length of the prompt and the chosen/rejected response, with |
|
label_pad_token_id for the prompt tokens. |
|
""" |
|
batch = {} |
|
prompt = feature["prompt"] |
|
chosen = feature["chosen"] |
|
rejected = feature["rejected"] |
|
|
|
if not self.is_encoder_decoder: |
|
|
|
|
|
|
|
|
|
|
|
if not isinstance(prompt, str): |
|
raise ValueError(f"prompt should be an str but got {type(prompt)}") |
|
prompt_tokens = self.processing_class(prompt, add_special_tokens=False) |
|
prompt_tokens = {f"prompt_{k}": v for k, v in prompt_tokens.items()} |
|
|
|
if not isinstance(chosen, str): |
|
raise ValueError(f"chosen should be an str but got {type(chosen)}") |
|
chosen_tokens = self.build_tokenized_answer(prompt, chosen) |
|
|
|
if not isinstance(rejected, str): |
|
raise ValueError(f"rejected should be an str but got {type(rejected)}") |
|
rejected_tokens = self.build_tokenized_answer(prompt, rejected) |
|
|
|
|
|
|
|
prompt_len_input_ids = len(prompt_tokens["prompt_input_ids"]) |
|
|
|
chosen_prompt_len_input_ids = len(chosen_tokens["prompt_input_ids"]) |
|
rejected_prompt_len_input_ids = len(rejected_tokens["prompt_input_ids"]) |
|
prompt_len_input_ids = min(chosen_prompt_len_input_ids, rejected_prompt_len_input_ids) |
|
|
|
for k, v in prompt_tokens.items(): |
|
prompt_tokens[k] = v[:prompt_len_input_ids] |
|
|
|
|
|
|
|
num_diff_tokens = sum( |
|
[a != b for a, b in zip(chosen_tokens["prompt_input_ids"], rejected_tokens["prompt_input_ids"])] |
|
) |
|
num_diff_len = abs(chosen_prompt_len_input_ids - rejected_prompt_len_input_ids) |
|
if num_diff_tokens > 1 or num_diff_len > 1: |
|
raise ValueError( |
|
"Chosen and rejected prompt_input_ids might only differ on the " |
|
"last token due to tokenizer merge ops." |
|
) |
|
|
|
|
|
prompt_tokens, chosen_tokens, rejected_tokens = add_bos_token_if_needed( |
|
self.processing_class.bos_token_id, |
|
prompt_len_input_ids, |
|
prompt_tokens, |
|
chosen_prompt_len_input_ids, |
|
chosen_tokens, |
|
rejected_prompt_len_input_ids, |
|
rejected_tokens, |
|
) |
|
|
|
|
|
chosen_tokens, rejected_tokens = add_eos_token_if_needed( |
|
self.processing_class.eos_token_id, chosen_tokens, rejected_tokens |
|
) |
|
|
|
longer_response_length = max(len(chosen_tokens["input_ids"]), len(rejected_tokens["input_ids"])) |
|
|
|
|
|
for answer_tokens in [chosen_tokens, rejected_tokens, prompt_tokens]: |
|
if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length: |
|
if self.truncation_mode == "keep_start": |
|
for k in ["prompt_input_ids", "prompt_attention_mask"]: |
|
answer_tokens[k] = answer_tokens[k][: self.max_prompt_length] |
|
elif self.truncation_mode == "keep_end": |
|
for k in ["prompt_input_ids", "prompt_attention_mask"]: |
|
answer_tokens[k] = answer_tokens[k][-self.max_prompt_length :] |
|
else: |
|
raise ValueError(f"Unknown truncation mode: {self.truncation_mode}") |
|
|
|
|
|
for answer_tokens in [chosen_tokens, rejected_tokens]: |
|
if len(answer_tokens["prompt_input_ids"]) + longer_response_length > self.max_length: |
|
for k in ["input_ids", "attention_mask"]: |
|
answer_tokens[k] = answer_tokens[k][: self.max_length - self.max_prompt_length] |
|
|
|
|
|
chosen_sequence_tokens = { |
|
k: chosen_tokens[f"prompt_{k}"] + chosen_tokens[k] for k in ["input_ids", "attention_mask"] |
|
} |
|
rejected_sequence_tokens = { |
|
k: rejected_tokens[f"prompt_{k}"] + rejected_tokens[k] for k in ["input_ids", "attention_mask"] |
|
} |
|
chosen_sequence_tokens["labels"] = chosen_sequence_tokens["input_ids"][:] |
|
chosen_sequence_tokens["labels"][: len(chosen_tokens["prompt_input_ids"])] = [ |
|
self.label_pad_token_id |
|
] * len(chosen_tokens["prompt_input_ids"]) |
|
rejected_sequence_tokens["labels"] = rejected_sequence_tokens["input_ids"][:] |
|
rejected_sequence_tokens["labels"][: len(rejected_tokens["prompt_input_ids"])] = [ |
|
self.label_pad_token_id |
|
] * len(rejected_tokens["prompt_input_ids"]) |
|
|
|
for k, toks in { |
|
"chosen_": chosen_sequence_tokens, |
|
"rejected_": rejected_sequence_tokens, |
|
"": prompt_tokens, |
|
}.items(): |
|
for type_key, tokens in toks.items(): |
|
if type_key == "token_type_ids": |
|
continue |
|
batch[f"{k}{type_key}"] = tokens |
|
|
|
else: |
|
chosen_tokens = self.processing_class( |
|
chosen, truncation=True, max_length=self.max_completion_length, add_special_tokens=True |
|
) |
|
rejected_tokens = self.processing_class( |
|
rejected, truncation=True, max_length=self.max_completion_length, add_special_tokens=True |
|
) |
|
prompt_tokens = self.processing_class( |
|
prompt, truncation=True, max_length=self.max_prompt_length, add_special_tokens=True |
|
) |
|
|
|
batch["chosen_labels"] = chosen_tokens["input_ids"] |
|
batch["rejected_labels"] = rejected_tokens["input_ids"] |
|
batch["prompt_input_ids"] = prompt_tokens["input_ids"] |
|
batch["prompt_attention_mask"] = prompt_tokens["attention_mask"] |
|
|
|
if model is not None and hasattr(model, "prepare_decoder_input_ids_from_labels"): |
|
batch["rejected_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels( |
|
labels=torch.tensor(batch["rejected_labels"]) |
|
) |
|
batch["chosen_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels( |
|
labels=torch.tensor(batch["chosen_labels"]) |
|
) |
|
|
|
if is_torch_xla_available(): |
|
|
|
for k in batch: |
|
if "labels" in k or self.is_encoder_decoder: |
|
pad_value = self.label_pad_token_id |
|
elif k.endswith("_input_ids"): |
|
pad_value = self.padding_value |
|
elif k.endswith("_attention_mask"): |
|
pad_value = 0 |
|
batch[k] = batch[k] + [pad_value] * (self.max_length - len(batch[k])) |
|
return batch |
|
|
|
@staticmethod |
|
def concatenated_inputs( |
|
batch: dict[str, Union[list, torch.LongTensor]], |
|
is_encoder_decoder: bool = False, |
|
label_pad_token_id: int = -100, |
|
padding_value: int = 0, |
|
device: Optional[torch.device] = None, |
|
) -> dict[str, torch.LongTensor]: |
|
"""Concatenate the chosen and rejected inputs into a single tensor. |
|
|
|
Args: |
|
batch: A batch of data. Must contain the keys 'chosen_input_ids' and 'rejected_input_ids', which are tensors of shape (batch_size, sequence_length). |
|
is_encoder_decoder: Whether the model is an encoder-decoder model. |
|
label_pad_token_id: The label pad token id. |
|
padding_value: The padding value to use for the concatenated inputs_ids. |
|
device: The device for the concatenated inputs. |
|
|
|
Returns: |
|
A dictionary containing the concatenated inputs under the key 'concatenated_input_ids'. |
|
""" |
|
concatenated_batch = {} |
|
|
|
if is_encoder_decoder: |
|
max_length = max(batch["chosen_labels"].shape[1], batch["rejected_labels"].shape[1]) |
|
else: |
|
max_length = max(batch["chosen_input_ids"].shape[1], batch["rejected_input_ids"].shape[1]) |
|
|
|
for k in batch: |
|
if k.startswith("chosen") and isinstance(batch[k], torch.Tensor): |
|
if "labels" in k or is_encoder_decoder: |
|
pad_value = label_pad_token_id |
|
elif k.endswith("_input_ids"): |
|
pad_value = padding_value |
|
elif k.endswith("_attention_mask"): |
|
pad_value = 0 |
|
concatenated_key = k.replace("chosen", "concatenated") |
|
concatenated_batch[concatenated_key] = pad_to_length(batch[k], max_length, pad_value=pad_value) |
|
for k in batch: |
|
if k.startswith("rejected") and isinstance(batch[k], torch.Tensor): |
|
if "labels" in k or is_encoder_decoder: |
|
pad_value = label_pad_token_id |
|
elif k.endswith("_input_ids"): |
|
pad_value = padding_value |
|
elif k.endswith("_attention_mask"): |
|
pad_value = 0 |
|
concatenated_key = k.replace("rejected", "concatenated") |
|
concatenated_batch[concatenated_key] = torch.cat( |
|
( |
|
concatenated_batch[concatenated_key], |
|
pad_to_length(batch[k], max_length, pad_value=pad_value), |
|
), |
|
dim=0, |
|
).to(device=device) |
|
|
|
if is_encoder_decoder: |
|
concatenated_batch["concatenated_input_ids"] = batch["prompt_input_ids"].repeat(2, 1).to(device=device) |
|
concatenated_batch["concatenated_attention_mask"] = ( |
|
batch["prompt_attention_mask"].repeat(2, 1).to(device=device) |
|
) |
|
|
|
return concatenated_batch |
|
|
|
def odds_ratio_loss( |
|
self, |
|
policy_chosen_logps: torch.FloatTensor, |
|
policy_rejected_logps: torch.FloatTensor, |
|
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: |
|
"""Compute ORPO's odds ratio (OR) loss for a batch of policy and reference model log probabilities. |
|
|
|
Args: |
|
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,) |
|
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,) |
|
|
|
Returns: |
|
A tuple of three tensors: (losses, chosen_rewards, rejected_rewards). |
|
The losses tensor contains the ORPO loss for each example in the batch. |
|
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively. |
|
The log odds ratio of the chosen responses over the rejected responses ratio for logging purposes. |
|
The `log(sigmoid(log_odds_chosen))` for logging purposes. |
|
""" |
|
|
|
|
|
log_odds = (policy_chosen_logps - policy_rejected_logps) - ( |
|
torch.log1p(-torch.exp(policy_chosen_logps)) - torch.log1p(-torch.exp(policy_rejected_logps)) |
|
) |
|
ratio = F.logsigmoid(log_odds) |
|
losses = self.beta * ratio |
|
|
|
chosen_rewards = self.beta * (policy_chosen_logps.to(self.accelerator.device)).detach() |
|
rejected_rewards = self.beta * (policy_rejected_logps.to(self.accelerator.device)).detach() |
|
|
|
return losses, chosen_rewards, rejected_rewards, torch.mean(ratio), torch.mean(log_odds) |
|
|
|
@staticmethod |
|
def get_batch_logps( |
|
logits: torch.FloatTensor, |
|
labels: torch.LongTensor, |
|
average_log_prob: bool = False, |
|
label_pad_token_id: int = -100, |
|
is_encoder_decoder: bool = False, |
|
) -> torch.FloatTensor: |
|
"""Compute the log probabilities of the given labels under the given logits. |
|
|
|
Args: |
|
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size) |
|
labels: Labels for which to compute the log probabilities. Label tokens with a value of label_pad_token_id are ignored. Shape: (batch_size, sequence_length) |
|
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens. |
|
label_pad_token_id: The label pad token id. |
|
is_encoder_decoder: Whether the model is an encoder-decoder model. |
|
|
|
Returns: |
|
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits. |
|
""" |
|
if logits.shape[:-1] != labels.shape: |
|
raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.") |
|
|
|
if not is_encoder_decoder: |
|
labels = labels[:, 1:].clone() |
|
logits = logits[:, :-1, :] |
|
loss_mask = labels != label_pad_token_id |
|
|
|
|
|
labels = torch.where(labels == label_pad_token_id, 0, labels) |
|
|
|
per_token_logps = selective_log_softmax(logits, labels) |
|
|
|
if average_log_prob: |
|
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) |
|
else: |
|
return (per_token_logps * loss_mask).sum(-1) |
|
|
|
def concatenated_forward( |
|
self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]] |
|
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: |
|
"""Run the given model on the given batch of inputs, concatenating the chosen and rejected inputs together. |
|
|
|
We do this to avoid doing two forward passes, because it's faster for FSDP. |
|
""" |
|
concatenated_batch = self.concatenated_inputs( |
|
batch, |
|
is_encoder_decoder=self.is_encoder_decoder, |
|
label_pad_token_id=self.label_pad_token_id, |
|
padding_value=self.padding_value, |
|
device=self.accelerator.device, |
|
) |
|
len_chosen = batch["chosen_labels"].shape[0] |
|
|
|
model_kwargs = ( |
|
{ |
|
"decoder_input_ids": self._shift_right(concatenated_batch["concatenated_labels"]), |
|
} |
|
if self.is_encoder_decoder |
|
else {} |
|
) |
|
|
|
if self.aux_loss_enabled: |
|
model_kwargs["output_router_logits"] = True |
|
|
|
outputs = model( |
|
concatenated_batch["concatenated_input_ids"], |
|
attention_mask=concatenated_batch["concatenated_attention_mask"], |
|
use_cache=False, |
|
**model_kwargs, |
|
) |
|
all_logits = outputs.logits |
|
|
|
def cross_entropy_loss(logits, labels): |
|
if not self.is_encoder_decoder: |
|
|
|
logits = logits[..., :-1, :].contiguous() |
|
labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
logits = logits.view(-1, logits.shape[-1]) |
|
labels = labels.view(-1) |
|
|
|
labels = labels.to(logits.device) |
|
loss = loss_fct(logits, labels) |
|
return loss |
|
|
|
if self.is_encoder_decoder: |
|
labels = concatenated_batch["concatenated_labels"].clone() |
|
else: |
|
labels = concatenated_batch["concatenated_input_ids"].clone() |
|
attention_mask = concatenated_batch["concatenated_attention_mask"] |
|
labels = torch.where(attention_mask == 1, labels, self.label_pad_token_id) |
|
|
|
chosen_nll_loss = cross_entropy_loss(all_logits[:len_chosen], labels[:len_chosen]) |
|
|
|
all_logps = self.get_batch_logps( |
|
all_logits, |
|
concatenated_batch["concatenated_labels"], |
|
average_log_prob=True, |
|
is_encoder_decoder=self.is_encoder_decoder, |
|
label_pad_token_id=self.label_pad_token_id, |
|
) |
|
|
|
chosen_logps = all_logps[:len_chosen] |
|
rejected_logps = all_logps[len_chosen:] |
|
|
|
if not self.is_encoder_decoder: |
|
chosen_logits = all_logits[:len_chosen, :-1, :] |
|
rejected_logits = all_logits[len_chosen:, :-1, :] |
|
else: |
|
chosen_logits = all_logits[:len_chosen] |
|
rejected_logits = all_logits[len_chosen:] |
|
|
|
if self.aux_loss_enabled: |
|
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_nll_loss, outputs.aux_loss) |
|
|
|
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_nll_loss) |
|
|
|
def get_batch_loss_metrics( |
|
self, |
|
model, |
|
batch: dict[str, Union[list, torch.LongTensor]], |
|
train_eval: Literal["train", "eval"] = "train", |
|
): |
|
"""Compute the ORPO loss and other metrics for the given batch of inputs for train or test.""" |
|
metrics = {} |
|
|
|
forward_output = self.concatenated_forward(model, batch) |
|
( |
|
policy_chosen_logps, |
|
policy_rejected_logps, |
|
policy_chosen_logits, |
|
policy_rejected_logits, |
|
policy_nll_loss, |
|
) = forward_output[:5] |
|
if self.aux_loss_enabled: |
|
aux_loss = forward_output[5] |
|
|
|
losses, chosen_rewards, rejected_rewards, log_odds_ratio, log_odds_chosen = self.odds_ratio_loss( |
|
policy_chosen_logps, policy_rejected_logps |
|
) |
|
|
|
loss = policy_nll_loss - losses.mean() |
|
|
|
reward_accuracies = (chosen_rewards > rejected_rewards).float() |
|
|
|
prefix = "eval_" if train_eval == "eval" else "" |
|
metrics[f"{prefix}rewards/chosen"] = self.accelerator.gather_for_metrics(chosen_rewards).mean() |
|
metrics[f"{prefix}rewards/rejected"] = self.accelerator.gather_for_metrics(rejected_rewards).mean() |
|
metrics[f"{prefix}rewards/accuracies"] = self.accelerator.gather_for_metrics(reward_accuracies).mean() |
|
metrics[f"{prefix}rewards/margins"] = self.accelerator.gather_for_metrics( |
|
chosen_rewards - rejected_rewards |
|
).mean() |
|
metrics[f"{prefix}logps/rejected"] = self.accelerator.gather_for_metrics(policy_rejected_logps).detach().mean() |
|
metrics[f"{prefix}logps/chosen"] = self.accelerator.gather_for_metrics(policy_chosen_logps).detach().mean() |
|
metrics[f"{prefix}logits/rejected"] = self.accelerator.gather_for_metrics( |
|
policy_rejected_logits.detach().mean() |
|
).mean() |
|
metrics[f"{prefix}logits/chosen"] = self.accelerator.gather_for_metrics( |
|
policy_chosen_logits.detach().mean() |
|
).mean() |
|
metrics[f"{prefix}nll_loss"] = self.accelerator.gather_for_metrics(policy_nll_loss).detach().mean() |
|
metrics[f"{prefix}log_odds_ratio"] = self.accelerator.gather_for_metrics(log_odds_ratio).detach().mean() |
|
metrics[f"{prefix}log_odds_chosen"] = self.accelerator.gather_for_metrics(log_odds_chosen).detach().mean() |
|
if is_torch_xla_available(): |
|
xm.mark_step() |
|
for k, v in metrics.items(): |
|
metrics[k] = v.item() |
|
if self.aux_loss_enabled: |
|
loss += self.aux_loss_coef * aux_loss |
|
|
|
return loss, metrics |
|
|
|
def compute_loss( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module], |
|
inputs: dict[str, Union[torch.Tensor, Any]], |
|
return_outputs=False, |
|
num_items_in_batch=None, |
|
) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]: |
|
compute_loss_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext() |
|
|
|
with compute_loss_context_manager: |
|
loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="train") |
|
|
|
|
|
loss = loss.to(self.args.device) |
|
|
|
|
|
self.store_metrics(metrics, train_eval="train") |
|
|
|
if return_outputs: |
|
return (loss, metrics) |
|
return loss |
|
|
|
def generate_from_model(self, model, batch: dict[str, torch.LongTensor]) -> str: |
|
"""Generate samples from the model and reference model for the given batch of inputs.""" |
|
|
|
|
|
|
|
generate_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext() |
|
|
|
with generate_context_manager: |
|
policy_output = model.generate( |
|
input_ids=batch["prompt_input_ids"], |
|
attention_mask=batch["prompt_attention_mask"], |
|
max_length=self.max_length, |
|
do_sample=True, |
|
pad_token_id=self.processing_class.pad_token_id, |
|
) |
|
|
|
policy_output = pad_to_length(policy_output, self.max_length, self.processing_class.pad_token_id) |
|
policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True) |
|
|
|
return policy_output_decoded |
|
|
|
def prediction_step( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module], |
|
inputs: dict[str, Union[torch.Tensor, Any]], |
|
prediction_loss_only: bool, |
|
ignore_keys: Optional[list[str]] = None, |
|
): |
|
if not self.use_dpo_data_collator: |
|
warnings.warn( |
|
"prediction_step is only implemented for DPODataCollatorWithPadding, and you passed a datacollator that is different than " |
|
"DPODataCollatorWithPadding - you might see unexpected behavior. Alternatively, you can implement your own prediction_step method if you are using a custom data collator" |
|
) |
|
if ignore_keys is None: |
|
if hasattr(model, "config"): |
|
ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", []) |
|
else: |
|
ignore_keys = [] |
|
|
|
prediction_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext() |
|
|
|
with torch.no_grad(), prediction_context_manager: |
|
loss, metrics = self.get_batch_loss_metrics(model, inputs, train_eval="eval") |
|
|
|
|
|
self.store_metrics(metrics, train_eval="eval") |
|
|
|
if prediction_loss_only: |
|
return (loss.detach(), None, None) |
|
|
|
|
|
logits_dict = { |
|
"eval_logits/chosen": metrics["eval_logits/chosen"], |
|
"eval_logits/rejected": metrics["eval_logits/rejected"], |
|
} |
|
logits = [v for k, v in logits_dict.items() if k not in ignore_keys] |
|
logits = torch.tensor(logits, device=self.accelerator.device) |
|
labels = torch.zeros(logits.shape[0], device=self.accelerator.device) |
|
|
|
return (loss.detach(), logits, labels) |
|
|
|
def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None: |
|
for key, value in metrics.items(): |
|
self._stored_metrics[train_eval][key].append(value) |
|
|
|
def evaluation_loop( |
|
self, |
|
dataloader: DataLoader, |
|
description: str, |
|
prediction_loss_only: Optional[bool] = None, |
|
ignore_keys: Optional[list[str]] = None, |
|
metric_key_prefix: str = "eval", |
|
) -> EvalLoopOutput: |
|
""" |
|
Overriding built-in evaluation loop to store metrics for each batch. |
|
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`. |
|
|
|
Works both with or without labels. |
|
""" |
|
|
|
|
|
if self.generate_during_eval: |
|
|
|
num_samples = len(dataloader.dataset) |
|
random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size) |
|
|
|
|
|
random_batch_dataset = dataloader.dataset.select(random_indices) |
|
random_batch = self.data_collator(random_batch_dataset) |
|
random_batch = self._prepare_inputs(random_batch) |
|
|
|
policy_output_decoded = self.generate_from_model(self.model, random_batch) |
|
|
|
table = pd.DataFrame( |
|
columns=["Prompt", "Policy"], |
|
data=[ |
|
[prompt, pol[len(prompt) :]] for prompt, pol in zip(random_batch["prompt"], policy_output_decoded) |
|
], |
|
) |
|
if "wandb" in self.args.report_to: |
|
wandb.log({"game_log": wandb.Table(data=table)}) |
|
|
|
if "comet_ml" in self.args.report_to: |
|
log_table_to_comet_experiment( |
|
name="game_log.csv", |
|
table=table, |
|
) |
|
|
|
|
|
initial_output = super().evaluation_loop( |
|
dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix |
|
) |
|
|
|
return initial_output |
|
|
|
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: |
|
""" |
|
Log `logs` on the various objects watching training, including stored metrics. |
|
|
|
Args: |
|
logs (`dict[str, float]`): |
|
The values to log. |
|
start_time (`float` or `None`, *optional*, defaults to `None`): |
|
Start time of the training. |
|
""" |
|
|
|
train_eval = "train" if "loss" in logs else "eval" |
|
|
|
for key, metrics in self._stored_metrics[train_eval].items(): |
|
logs[key] = torch.tensor(metrics).mean().item() |
|
del self._stored_metrics[train_eval] |
|
|
|
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"): |
|
return super().log(logs, start_time) |
|
else: |
|
return super().log(logs) |
|
|
|
def _shift_right(self, input_ids): |
|
if self.decoder_start_token_id is None: |
|
raise ValueError( |
|
"model.config.decoder_start_token_id has to be defined. It is usually set to the pad_token_id." |
|
) |
|
|
|
|
|
if is_torch_fx_proxy(input_ids): |
|
|
|
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), self.decoder_start_token_id) |
|
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) |
|
else: |
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape) |
|
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() |
|
shifted_input_ids[..., 0] = self.decoder_start_token_id |
|
|
|
if self.pad_token_id is None: |
|
raise ValueError("model.config.pad_token_id has to be defined.") |
|
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, self.pad_token_id) |
|
|
|
return shifted_input_ids |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
tags = tags or [] |
|
if isinstance(tags, str): |
|
tags = [tags] |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.append("unsloth") |
|
|
|
citation = textwrap.dedent("""\ |
|
@article{hong2024orpo, |
|
title = {{ORPO: Monolithic Preference Optimization without Reference Model}}, |
|
author = {Jiwoo Hong and Noah Lee and James Thorne}, |
|
year = 2024, |
|
eprint = {arXiv:2403.07691} |
|
}""") |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=tags, |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
comet_url=get_comet_experiment_url(), |
|
trainer_name="ORPO", |
|
trainer_citation=citation, |
|
paper_title="ORPO: Monolithic Preference Optimization without Reference Model", |
|
paper_id="2403.07691", |
|
) |
|
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
|