|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import textwrap |
|
import warnings |
|
from functools import wraps |
|
from typing import Any, Callable, Optional, Union |
|
|
|
import datasets |
|
import jinja2 |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.data |
|
import transformers |
|
from datasets import Dataset |
|
from packaging import version |
|
from torch.utils.data import DataLoader, IterableDataset |
|
from transformers import ( |
|
BaseImageProcessor, |
|
DataCollator, |
|
FeatureExtractionMixin, |
|
GenerationConfig, |
|
PreTrainedModel, |
|
PreTrainedTokenizerBase, |
|
ProcessorMixin, |
|
Trainer, |
|
TrainerCallback, |
|
is_apex_available, |
|
is_wandb_available, |
|
) |
|
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, seed_worker |
|
from transformers.training_args import OptimizerNames |
|
from transformers.utils import is_peft_available, is_sagemaker_mp_enabled, logging |
|
|
|
from ..data_utils import apply_chat_template, is_conversational, maybe_apply_chat_template |
|
from ..import_utils import is_vllm_available |
|
from ..models import create_reference_model |
|
from ..models.utils import unwrap_model_for_generation |
|
from .judges import BasePairwiseJudge |
|
from .online_dpo_config import OnlineDPOConfig |
|
from .utils import ( |
|
SIMPLE_CHAT_TEMPLATE, |
|
DPODataCollatorWithPadding, |
|
disable_dropout_in_model, |
|
empty_cache, |
|
generate_model_card, |
|
get_comet_experiment_url, |
|
get_reward, |
|
prepare_deepspeed, |
|
truncate_right, |
|
) |
|
|
|
|
|
if is_peft_available(): |
|
from peft import PeftModel, get_peft_model |
|
|
|
if is_apex_available(): |
|
from apex import amp |
|
|
|
|
|
if is_sagemaker_mp_enabled(): |
|
from smdistributed.modelparallel import __version__ as SMP_VERSION |
|
|
|
IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10") |
|
|
|
else: |
|
IS_SAGEMAKER_MP_POST_1_10 = False |
|
|
|
|
|
if is_vllm_available(): |
|
from vllm import LLM, SamplingParams |
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class OnlineDPOTrainer(Trainer): |
|
r""" |
|
Initialize OnlineDPOTrainer. |
|
|
|
Args: |
|
model (`transformers.PreTrainedModel` or `torch.nn.Module`): |
|
The model to train, preferably an `AutoModelForCausalLM`. |
|
ref_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`): |
|
The reference model to use for training. If None is specified, the reference model will be created from |
|
the model. |
|
reward_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`): |
|
The reward model to score completions with, preferably an `AutoModelForSequenceClassification`. |
|
judge (`BasePairwiseJudge`): |
|
The judge to use for pairwise comparison of model completions. |
|
args (`OnlineDPOConfig`): |
|
The online DPO config arguments to use for training. |
|
data_collator (`transformers.DataCollator`): |
|
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used |
|
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. |
|
train_dataset (`datasets.Dataset`): |
|
The dataset to use for training. |
|
eval_dataset (`datasets.Dataset`): |
|
The dataset to use for evaluation. |
|
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): |
|
Processing class used to process the data. If provided, will be used to automatically process the inputs |
|
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or |
|
reuse the fine-tuned model. |
|
peft_config (`dict`): |
|
The peft config to use for training. |
|
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): |
|
The function to use to compute the metrics. Must take a `EvalPrediction` and return |
|
a dictionary string to metric values. |
|
callbacks (`list[transformers.TrainerCallback]`): |
|
The callbacks to use for training. |
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): |
|
The optimizer and scheduler to use for training. |
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): |
|
The function to use to preprocess the logits before computing the metrics. |
|
""" |
|
|
|
_tag_names = ["trl", "online-dpo"] |
|
|
|
def __init__( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module], |
|
ref_model: Union[PreTrainedModel, nn.Module, None] = None, |
|
reward_model: Union[PreTrainedModel, nn.Module, None] = None, |
|
judge: Optional[BasePairwiseJudge] = None, |
|
args: Optional[OnlineDPOConfig] = None, |
|
data_collator: Optional[DataCollator] = None, |
|
train_dataset: Optional[Union[Dataset, IterableDataset, "datasets.Dataset"]] = None, |
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset], "datasets.Dataset"]] = None, |
|
processing_class: Optional[ |
|
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] |
|
] = None, |
|
reward_processing_class: Optional[PreTrainedTokenizerBase] = None, |
|
peft_config: Optional[dict] = None, |
|
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, |
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), |
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
) -> None: |
|
if ref_model is model: |
|
raise ValueError( |
|
"`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " |
|
"same as `model`, either omit the `ref_model` argument or pass `None`." |
|
) |
|
|
|
self.ref_model = ref_model |
|
|
|
if reward_model is not None and judge is not None: |
|
warnings.warn( |
|
"Both `reward_model` and `judge` are provided. Please choose provide only one of them. " |
|
"Ignoring `judge` and using `reward_model`.", |
|
UserWarning, |
|
) |
|
judge = None |
|
elif reward_model is None and judge is None: |
|
raise ValueError("Either `reward_model` or `judge` must be provided.") |
|
|
|
self.reward_model = reward_model |
|
self.reward_processing_class = reward_processing_class |
|
self.judge = judge |
|
self.is_encoder_decoder = model.config.is_encoder_decoder |
|
|
|
if args.missing_eos_penalty is not None and judge is not None: |
|
raise ValueError("`missing_eos_penalty` is not supported when `judge` is provided.") |
|
|
|
if args is None: |
|
raise ValueError("`args` must be provided.") |
|
|
|
|
|
if processing_class is None: |
|
raise ValueError("`processing_class` must be provided.") |
|
|
|
|
|
if peft_config is not None: |
|
|
|
if not is_peft_available(): |
|
raise ImportError( |
|
"PEFT is not available and passed `peft_config`. Please install PEFT with " |
|
"`pip install peft` to use it." |
|
) |
|
|
|
|
|
|
|
if isinstance(model, PeftModel): |
|
model = model.merge_and_unload() |
|
|
|
|
|
model = get_peft_model(model, peft_config) |
|
|
|
|
|
if args.disable_dropout: |
|
disable_dropout_in_model(model) |
|
if self.ref_model is not None: |
|
disable_dropout_in_model(self.ref_model) |
|
|
|
|
|
|
|
|
|
|
|
if ref_model is None: |
|
if peft_config is None: |
|
self.ref_model = create_reference_model(model) |
|
else: |
|
self.ref_model = None |
|
else: |
|
self.ref_model = ref_model |
|
self.ref_model.eval() |
|
|
|
|
|
if self.reward_model is not None: |
|
self.reward_model.eval() |
|
|
|
|
|
if data_collator is None: |
|
data_collator = DPODataCollatorWithPadding(pad_token_id=processing_class.pad_token_id) |
|
|
|
self.max_length = args.max_length |
|
|
|
self.stats = { |
|
"objective/kl": [], |
|
"objective/entropy": [], |
|
"objective/non_score_reward": [], |
|
"rewards/chosen": [], |
|
"rewards/rejected": [], |
|
"rewards/accuracies": [], |
|
"rewards/margins": [], |
|
"logps/chosen": [], |
|
"logps/rejected": [], |
|
"val/contain_eos_token": [], |
|
"beta": [], |
|
} |
|
if self.reward_model is not None: |
|
self.stats["objective/rlhf_reward"] = [] |
|
self.stats["objective/scores_margin"] = [] |
|
self.stats["objective/scores"] = [] |
|
|
|
if args.use_vllm: |
|
if not is_vllm_available(): |
|
raise ImportError( |
|
"vLLM is not available and `use_vllm` is set to True. Please install vLLM with " |
|
"`pip install vllm` to use it." |
|
) |
|
self.generation_config = SamplingParams( |
|
n=2, |
|
max_tokens=args.max_new_tokens, |
|
temperature=args.temperature, |
|
top_k=50, |
|
top_p=1.0, |
|
detokenize=False, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
self.llm = LLM( |
|
model=model.name_or_path, |
|
gpu_memory_utilization=args.gpu_memory_utilization, |
|
dtype=torch.float32, |
|
|
|
|
|
|
|
|
|
) |
|
else: |
|
self.generation_config = GenerationConfig( |
|
max_new_tokens=args.max_new_tokens, |
|
temperature=args.temperature, |
|
top_k=50, |
|
top_p=1.0, |
|
do_sample=True, |
|
use_cache=False if args.gradient_checkpointing else True, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.warnings_issued["estimate_tokens"] = True |
|
|
|
super().__init__( |
|
model=model, |
|
args=args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
processing_class=processing_class, |
|
compute_metrics=compute_metrics, |
|
callbacks=callbacks, |
|
optimizers=optimizers, |
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
) |
|
|
|
|
|
if hasattr(self.model, "add_model_tags"): |
|
self.model.add_model_tags(self._tag_names) |
|
|
|
self._beta = args.beta |
|
|
|
|
|
if self.is_deepspeed_enabled: |
|
if self.reward_model is not None: |
|
self.reward_model = prepare_deepspeed( |
|
self.reward_model, args.per_device_train_batch_size, args.fp16, args.bf16 |
|
) |
|
if self.ref_model is not None: |
|
self.ref_model = prepare_deepspeed( |
|
self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16 |
|
) |
|
else: |
|
if self.ref_model is not None: |
|
self.ref_model = self.ref_model.to(self.accelerator.device) |
|
if self.reward_model is not None: |
|
self.reward_model = self.reward_model.to(self.accelerator.device) |
|
|
|
@property |
|
def beta(self): |
|
if isinstance(self._beta, list): |
|
epoch = self.state.epoch |
|
return self._beta[epoch] if epoch < len(self._beta) else self._beta[-1] |
|
else: |
|
return self._beta |
|
|
|
@staticmethod |
|
def tokenize_row(feature, is_encoder_decoder: bool, tokenizer: PreTrainedTokenizerBase) -> dict[str, Any]: |
|
"""Tokenize a single row from a DPO specific dataset.""" |
|
if not is_encoder_decoder: |
|
batch = tokenizer(feature["prompt"], add_special_tokens=False) |
|
|
|
if tokenizer.bos_token_id is not None: |
|
prompt_len_input_ids = len(batch["input_ids"]) |
|
if prompt_len_input_ids == 0 or tokenizer.bos_token_id != batch["input_ids"][0]: |
|
batch["input_ids"] = [tokenizer.bos_token_id] + batch["input_ids"] |
|
batch["attention_mask"] = [1] + batch["attention_mask"] |
|
else: |
|
batch = tokenizer(feature["prompt"], add_special_tokens=True) |
|
batch = {f"prompt_{key}": value for key, value in batch.items()} |
|
return batch |
|
|
|
|
|
@wraps(Trainer.get_train_dataloader) |
|
def get_train_dataloader(self) -> DataLoader: |
|
if self.train_dataset is None: |
|
raise ValueError("Trainer: training requires a train_dataset.") |
|
|
|
train_dataset = self.train_dataset |
|
data_collator = self.data_collator |
|
dataloader_params = { |
|
"batch_size": self._train_batch_size, |
|
"collate_fn": data_collator, |
|
"num_workers": self.args.dataloader_num_workers, |
|
"pin_memory": self.args.dataloader_pin_memory, |
|
"persistent_workers": self.args.dataloader_persistent_workers, |
|
} |
|
|
|
if not isinstance(train_dataset, torch.utils.data.IterableDataset): |
|
dataloader_params["sampler"] = self._get_train_sampler() |
|
dataloader_params["drop_last"] = self.args.dataloader_drop_last |
|
dataloader_params["worker_init_fn"] = seed_worker |
|
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor |
|
|
|
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params)) |
|
|
|
|
|
@wraps(Trainer.get_eval_dataloader) |
|
def get_eval_dataloader(self, eval_dataset: Optional[Union[str, Dataset]] = None) -> DataLoader: |
|
if eval_dataset is None and self.eval_dataset is None: |
|
raise ValueError("Trainer: evaluation requires an eval_dataset.") |
|
|
|
|
|
|
|
dataloader_key = eval_dataset if isinstance(eval_dataset, str) else "eval" |
|
if ( |
|
hasattr(self, "_eval_dataloaders") |
|
and dataloader_key in self._eval_dataloaders |
|
and self.args.dataloader_persistent_workers |
|
): |
|
return self.accelerator.prepare(self._eval_dataloaders[dataloader_key]) |
|
|
|
eval_dataset = ( |
|
self.eval_dataset[eval_dataset] |
|
if isinstance(eval_dataset, str) |
|
else eval_dataset |
|
if eval_dataset is not None |
|
else self.eval_dataset |
|
) |
|
data_collator = self.data_collator |
|
|
|
dataloader_params = { |
|
"batch_size": self.args.eval_batch_size, |
|
"collate_fn": data_collator, |
|
"num_workers": self.args.dataloader_num_workers, |
|
"pin_memory": self.args.dataloader_pin_memory, |
|
"persistent_workers": self.args.dataloader_persistent_workers, |
|
} |
|
|
|
if not isinstance(eval_dataset, torch.utils.data.IterableDataset): |
|
dataloader_params["sampler"] = self._get_eval_sampler(eval_dataset) |
|
dataloader_params["drop_last"] = self.args.dataloader_drop_last |
|
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor |
|
|
|
|
|
|
|
eval_dataloader = DataLoader(eval_dataset, **dataloader_params) |
|
if self.args.dataloader_persistent_workers: |
|
if hasattr(self, "_eval_dataloaders"): |
|
self._eval_dataloaders[dataloader_key] = eval_dataloader |
|
else: |
|
self._eval_dataloaders = {dataloader_key: eval_dataloader} |
|
|
|
return self.accelerator.prepare(eval_dataloader) |
|
|
|
def _generate_vllm(self, model, prompts): |
|
eos_token_id = self.processing_class.eos_token_id |
|
pad_token_id = self.processing_class.pad_token_id |
|
|
|
|
|
llm_model = self.llm.llm_engine.model_executor.driver_worker.model_runner.model |
|
llm_model.load_weights(model.state_dict().items()) |
|
|
|
if is_conversational({"prompt": prompts[0]}): |
|
outputs = self.llm.chat(prompts, self.generation_config, use_tqdm=False) |
|
else: |
|
outputs = self.llm.generate(prompts, self.generation_config, use_tqdm=False) |
|
|
|
completion_ids = [list(output.outputs[i].token_ids) for i in range(2) for output in outputs] |
|
prompt_ids = [list(output.prompt_token_ids) for _ in range(2) for output in outputs] |
|
|
|
|
|
max_prompt_length = max(len(ids) for ids in prompt_ids) |
|
prompt_mask = [[0] * (max_prompt_length - len(ids)) + [1] * len(ids) for ids in prompt_ids] |
|
prompt_ids = [[pad_token_id] * (max_prompt_length - len(ids)) + ids for ids in prompt_ids] |
|
max_tokens = self.generation_config.max_tokens |
|
completion_mask = [[1] * len(ids) + [0] * (max_tokens - len(ids)) for ids in completion_ids] |
|
completion_ids = [ |
|
ids + [eos_token_id] if ids[-1] != eos_token_id and len(ids) < max_tokens else ids |
|
for ids in completion_ids |
|
] |
|
completion_ids = [ids + [pad_token_id] * (max_tokens - len(ids)) for ids in completion_ids] |
|
|
|
|
|
prompt_ids = torch.tensor(prompt_ids, device=self.accelerator.device) |
|
prompt_mask = torch.tensor(prompt_mask, device=self.accelerator.device) |
|
completion_ids = torch.tensor(completion_ids, device=self.accelerator.device) |
|
completion_mask = torch.tensor(completion_mask, device=self.accelerator.device) |
|
|
|
return prompt_ids, prompt_mask, completion_ids, completion_mask |
|
|
|
def _generate(self, model, prompts): |
|
eos_token_id = self.processing_class.eos_token_id |
|
pad_token_id = self.processing_class.pad_token_id |
|
|
|
|
|
|
|
inputs = [{"prompt": prompt} for prompt in prompts] |
|
inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs] |
|
inputs = [self.tokenize_row(x, self.is_encoder_decoder, self.processing_class) for x in inputs] |
|
inputs = self.data_collator(inputs) |
|
|
|
|
|
inputs = self._prepare_inputs(inputs) |
|
prompt_ids = inputs["prompt_input_ids"].repeat(2, 1) |
|
prompt_mask = inputs["prompt_attention_mask"].repeat(2, 1) |
|
with unwrap_model_for_generation( |
|
model, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation |
|
) as unwrapped_model: |
|
output = unwrapped_model.generate( |
|
input_ids=prompt_ids, |
|
attention_mask=prompt_mask, |
|
generation_config=self.generation_config, |
|
) |
|
|
|
completion_ids = output[:, prompt_ids.size(1) :] |
|
completion_ids, completion_mask = truncate_right(completion_ids, eos_token_id, pad_token_id) |
|
|
|
return prompt_ids, prompt_mask, completion_ids, completion_mask |
|
|
|
def _forward(self, model, prompt_ids, prompt_mask, completion_ids, completion_mask): |
|
|
|
num_tokens_to_truncate = max(prompt_ids.size(1) + completion_ids.size(1) - self.max_length, 0) |
|
|
|
|
|
prompt_ids = prompt_ids[:, num_tokens_to_truncate:] |
|
prompt_mask = prompt_mask[:, num_tokens_to_truncate:] |
|
|
|
|
|
prompt_completion_ids = torch.cat((prompt_ids, completion_ids), dim=1) |
|
prompt_completion_mask = torch.cat((prompt_mask, completion_mask), dim=1) |
|
|
|
|
|
output = model(prompt_completion_ids, attention_mask=prompt_completion_mask) |
|
|
|
|
|
logits = output.logits[:, prompt_ids.size(1) - 1 : -1] |
|
|
|
|
|
logprobs = torch.take_along_dim(logits.log_softmax(dim=-1), completion_ids.unsqueeze(-1), dim=2).squeeze(-1) |
|
return logprobs |
|
|
|
def training_step( |
|
self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None |
|
) -> torch.Tensor: |
|
model.train() |
|
|
|
prompts = inputs["prompt"] |
|
batch_size = len(prompts) |
|
|
|
if self.args.use_vllm: |
|
prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate_vllm(model, prompts) |
|
else: |
|
prompt_ids, prompt_mask, completion_ids, completion_mask = self._generate(model, prompts) |
|
|
|
contain_eos_token = torch.any(completion_ids == self.processing_class.eos_token_id, dim=-1) |
|
|
|
logprobs = self._forward(model, prompt_ids, prompt_mask, completion_ids, completion_mask) |
|
with torch.no_grad(): |
|
if self.ref_model is not None: |
|
ref_logprobs = self._forward(self.ref_model, prompt_ids, prompt_mask, completion_ids, completion_mask) |
|
else: |
|
with self.model.disable_adapter(): |
|
ref_logprobs = self._forward(self.model, prompt_ids, prompt_mask, completion_ids, completion_mask) |
|
|
|
|
|
device = logprobs.device |
|
completions = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True) |
|
if is_conversational({"prompt": prompts[0]}): |
|
completions = [[{"role": "assistant", "content": completion}] for completion in completions] |
|
|
|
|
|
if self.judge is not None: |
|
|
|
|
|
|
|
|
|
if is_conversational({"prompt": prompts[0]}): |
|
environment = jinja2.Environment() |
|
template = environment.from_string(SIMPLE_CHAT_TEMPLATE) |
|
prompts = [template.render(messages=prompt) for prompt in prompts] |
|
completions = [template.render(messages=completion) for completion in completions] |
|
|
|
ranks_of_first_completion = self.judge.judge( |
|
prompts, list(zip(completions[:batch_size], completions[batch_size:])) |
|
) |
|
|
|
|
|
|
|
|
|
mask = torch.tensor([rank == 0 for rank in ranks_of_first_completion], device=device) |
|
else: |
|
|
|
|
|
prompts = 2 * prompts |
|
if is_conversational({"prompt": prompts[0]}): |
|
examples = [{"prompt": p, "completion": c} for p, c in zip(prompts, completions)] |
|
examples = [apply_chat_template(example, self.reward_processing_class) for example in examples] |
|
prompts = [example["prompt"] for example in examples] |
|
completions = [example["completion"] for example in examples] |
|
|
|
|
|
prompts_ids = self.reward_processing_class( |
|
prompts, padding=True, return_tensors="pt", padding_side="left" |
|
)["input_ids"].to(device) |
|
context_length = prompts_ids.shape[1] |
|
|
|
|
|
completions_ids = self.reward_processing_class( |
|
completions, padding=True, return_tensors="pt", padding_side="right" |
|
)["input_ids"].to(device) |
|
|
|
|
|
prompt_completion_ids = torch.cat((prompts_ids, completions_ids), dim=1) |
|
with torch.inference_mode(): |
|
_, scores, _ = get_reward( |
|
self.reward_model, prompt_completion_ids, self.reward_processing_class.pad_token_id, context_length |
|
) |
|
|
|
|
|
|
|
if self.args.missing_eos_penalty is not None: |
|
scores[~contain_eos_token] -= self.args.missing_eos_penalty |
|
|
|
|
|
first_half, second_half = scores.split(batch_size) |
|
|
|
|
|
mask = first_half >= second_half |
|
|
|
batch_range = torch.arange(batch_size, device=device) |
|
chosen_indices = batch_range + (~mask * batch_size) |
|
rejected_indices = batch_range + (mask * batch_size) |
|
|
|
|
|
cr_indices = torch.cat((chosen_indices, rejected_indices), dim=0) |
|
cr_logprobs = logprobs[cr_indices] |
|
cr_ref_logprobs = ref_logprobs[cr_indices] |
|
|
|
|
|
padding_mask = ~completion_mask.bool() |
|
cr_padding_mask = padding_mask[cr_indices] |
|
|
|
cr_logprobs_sum = (cr_logprobs * ~cr_padding_mask).sum(1) |
|
cr_ref_logprobs_sum = (cr_ref_logprobs * ~cr_padding_mask).sum(1) |
|
|
|
|
|
chosen_logprobs_sum, rejected_logprobs_sum = torch.split(cr_logprobs_sum, batch_size) |
|
chosen_ref_logprobs_sum, rejected_ref_logprobs_sum = torch.split(cr_ref_logprobs_sum, batch_size) |
|
pi_logratios = chosen_logprobs_sum - rejected_logprobs_sum |
|
ref_logratios = chosen_ref_logprobs_sum - rejected_ref_logprobs_sum |
|
|
|
logits = pi_logratios - ref_logratios |
|
|
|
if self.args.loss_type == "sigmoid": |
|
losses = -F.logsigmoid(self.beta * logits) |
|
elif self.args.loss_type == "ipo": |
|
losses = (logits - 1 / (2 * self.beta)) ** 2 |
|
else: |
|
raise NotImplementedError(f"invalid loss type {self.loss_type}") |
|
|
|
loss = losses.mean() |
|
|
|
|
|
if self.reward_model is not None: |
|
scores_margin = scores[chosen_indices] - scores[rejected_indices] |
|
self.stats["objective/scores_margin"].append( |
|
self.accelerator.gather_for_metrics(scores_margin.mean()).mean().item() |
|
) |
|
self.stats["objective/scores"].append(self.accelerator.gather_for_metrics(scores.mean()).mean().item()) |
|
self.stats["val/contain_eos_token"].append(contain_eos_token.float().mean().item()) |
|
self.stats["logps/chosen"].append(self.accelerator.gather_for_metrics(chosen_logprobs_sum).mean().item()) |
|
self.stats["logps/rejected"].append(self.accelerator.gather_for_metrics(rejected_logprobs_sum).mean().item()) |
|
|
|
kl = logprobs - ref_logprobs |
|
mean_kl = kl.sum(1).mean() |
|
self.stats["objective/kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item()) |
|
non_score_reward = (-self.beta * kl).sum(1) |
|
mean_non_score_reward = non_score_reward.mean() |
|
self.stats["objective/non_score_reward"].append( |
|
self.accelerator.gather_for_metrics(mean_non_score_reward).mean().item() |
|
) |
|
if self.reward_model is not None: |
|
rlhf_reward = scores + non_score_reward |
|
self.stats["objective/rlhf_reward"].append(self.accelerator.gather_for_metrics(rlhf_reward).mean().item()) |
|
mean_entropy = -logprobs.sum(1).mean() |
|
self.stats["objective/entropy"].append(self.accelerator.gather_for_metrics(mean_entropy).mean().item()) |
|
chosen_rewards = self.beta * (chosen_logprobs_sum - chosen_ref_logprobs_sum) |
|
gathered_chosen_rewards = self.accelerator.gather_for_metrics(chosen_rewards) |
|
self.stats["rewards/chosen"].append(gathered_chosen_rewards.mean().item()) |
|
rejected_rewards = self.beta * (rejected_logprobs_sum - rejected_ref_logprobs_sum) |
|
gathered_rejected_rewards = self.accelerator.gather_for_metrics(rejected_rewards) |
|
self.stats["rewards/rejected"].append(gathered_rejected_rewards.mean().item()) |
|
margin = gathered_chosen_rewards - gathered_rejected_rewards |
|
self.stats["rewards/margins"].append(margin.mean().item()) |
|
accuracy = margin > 0 |
|
self.stats["rewards/accuracies"].append(accuracy.float().mean().item()) |
|
self.stats["beta"].append(self.beta) |
|
|
|
if ( |
|
self.args.torch_empty_cache_steps is not None |
|
and self.state.global_step % self.args.torch_empty_cache_steps == 0 |
|
): |
|
empty_cache() |
|
|
|
kwargs = {} |
|
|
|
|
|
if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]: |
|
kwargs["learning_rate"] = self._get_learning_rate() |
|
|
|
if self.args.n_gpu > 1: |
|
loss = loss.mean() |
|
|
|
if self.use_apex: |
|
with amp.scale_loss(loss, self.optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
else: |
|
self.accelerator.backward(loss, **kwargs) |
|
|
|
return loss.detach() / self.args.gradient_accumulation_steps |
|
|
|
|
|
|
|
def _maybe_log_save_evaluate( |
|
self, tr_loss, grad_norm, model, trial, epoch, ignore_keys_for_eval, start_time=None, learning_rate=None |
|
): |
|
if self.control.should_log and self.state.global_step > self._globalstep_last_logged: |
|
logs: dict[str, float] = {} |
|
|
|
|
|
tr_loss_scalar = self._nested_gather(tr_loss).mean().item() |
|
|
|
|
|
tr_loss -= tr_loss |
|
|
|
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) |
|
if grad_norm is not None: |
|
logs["grad_norm"] = grad_norm.detach().item() if isinstance(grad_norm, torch.Tensor) else grad_norm |
|
if learning_rate is not None: |
|
logs["learning_rate"] = learning_rate |
|
else: |
|
logs["learning_rate"] = self._get_learning_rate() |
|
|
|
|
|
for key, val in self.stats.items(): |
|
logs[key] = sum(val) / len(val) |
|
self.stats = {key: [] for key in self.stats} |
|
|
|
self._total_loss_scalar += tr_loss_scalar |
|
self._globalstep_last_logged = self.state.global_step |
|
self.store_flos() |
|
|
|
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"): |
|
self.log(logs, start_time) |
|
else: |
|
self.log(logs) |
|
|
|
metrics = None |
|
if self.control.should_evaluate: |
|
metrics = self._evaluate(trial, ignore_keys_for_eval) |
|
is_new_best_metric = self._determine_best_metric(metrics=metrics, trial=trial) |
|
|
|
if self.args.save_strategy == "best": |
|
self.control.should_save = is_new_best_metric |
|
|
|
if self.control.should_save: |
|
self._save_checkpoint(model, trial) |
|
self.control = self.callback_handler.on_save(self.args, self.state, self.control) |
|
|
|
|
|
|
|
|
|
def _determine_best_metric(self, metrics, trial): |
|
""" |
|
Determine if the model should be saved based on the evaluation metrics. |
|
If args.metric_for_best_model is not set, the loss is used. |
|
Returns: |
|
bool: True if a new best metric was found, else False |
|
""" |
|
is_new_best_metric = False |
|
|
|
if self.args.metric_for_best_model is not None: |
|
metric_to_check = self.args.metric_for_best_model |
|
|
|
if not metric_to_check.startswith("eval_"): |
|
metric_to_check = f"eval_{metric_to_check}" |
|
|
|
try: |
|
metric_value = metrics[metric_to_check] |
|
except KeyError as exc: |
|
raise KeyError( |
|
f"The `metric_for_best_model` training argument is set to '{metric_to_check}', which is not found in the evaluation metrics. " |
|
f"The available evaluation metrics are: {list(metrics.keys())}. Consider changing the `metric_for_best_model` via the TrainingArguments." |
|
) from exc |
|
|
|
operator = np.greater if self.args.greater_is_better else np.less |
|
|
|
if self.state.best_metric is None: |
|
self.state.best_metric = float("-inf") if self.args.greater_is_better else float("inf") |
|
|
|
if operator(metric_value, self.state.best_metric): |
|
run_dir = self._get_output_dir(trial=trial) |
|
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" |
|
output_dir = os.path.join(run_dir, checkpoint_folder) |
|
self.state.best_metric = metric_value |
|
self.state.best_model_checkpoint = output_dir |
|
|
|
is_new_best_metric = True |
|
|
|
return is_new_best_metric |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
tags = tags or [] |
|
if isinstance(tags, str): |
|
tags = [tags] |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.append("unsloth") |
|
|
|
citation = textwrap.dedent("""\ |
|
@article{guo2024direct, |
|
title = {{Direct Language Model Alignment from Online AI Feedback}}, |
|
author = {Shangmin Guo and Biao Zhang and Tianlin Liu and Tianqi Liu and Misha Khalman and Felipe Llinares and Alexandre Ram{\'{e}} and Thomas Mesnard and Yao Zhao and Bilal Piot and Johan Ferret and Mathieu Blondel}, |
|
year = 2024, |
|
eprint = {arXiv:2402.04792} |
|
}""") |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=tags, |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
comet_url=get_comet_experiment_url(), |
|
trainer_name="Online DPO", |
|
trainer_citation=citation, |
|
paper_title="Direct Language Model Alignment from Online AI Feedback", |
|
paper_id="2402.04792", |
|
) |
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
|