|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
from typing import Any, Optional |
|
|
|
from transformers import TrainingArguments |
|
|
|
|
|
@dataclass |
|
class KTOConfig(TrainingArguments): |
|
r""" |
|
Configuration class for the [`KTOTrainer`]. |
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
command line. |
|
|
|
Parameters: |
|
learning_rate (`float`, *optional*, defaults to `1e-6`): |
|
Initial learning rate for [`AdamW`] optimizer. The default value replaces that of |
|
[`~transformers.TrainingArguments`]. |
|
max_length (`int` or `None`, *optional*, defaults to `1024`): |
|
Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want |
|
to use the default data collator. |
|
max_prompt_length (`int` or `None`, *optional*, defaults to `512`): |
|
Maximum length of the prompt. This argument is required if you want to use the default data collator. |
|
max_completion_length (`int` or `None`, *optional*, defaults to `None`): |
|
Maximum length of the completion. This argument is required if you want to use the default data collator |
|
and your model is an encoder-decoder. |
|
beta (`float`, *optional*, defaults to `0.1`): |
|
Parameter controlling the deviation from the reference model. Higher Ξ² means less deviation from the |
|
reference model. |
|
loss_type (`str`, *optional*, defaults to `"kto"`): |
|
Type of loss to use. Possible values are: |
|
|
|
- `"kto"`: KTO loss from the [KTO](https://huggingface.co/papers/2402.01306) paper. |
|
- `"apo_zero_unpaired"`: Unpaired variant of APO-zero loss from the [APO](https://huggingface.co/papers/2408.06266) paper. |
|
|
|
desirable_weight (`float`, *optional*, defaults to `1.0`): |
|
Desirable losses are weighed by this factor to counter unequal number of desirable and undesirable paris. |
|
undesirable_weight (`float`, *optional*, defaults to `1.0`): |
|
Undesirable losses are weighed by this factor to counter unequal number of desirable and undesirable pairs. |
|
label_pad_token_id (`int`, *optional*, defaults to `-100`): |
|
Label pad token id. This argument is required if you want to use the default data collator. |
|
padding_value (`int` or `None`, *optional*, defaults to `None`): |
|
Padding value to use. If `None`, the padding value of the tokenizer is used. |
|
truncation_mode (`str`, *optional*, defaults to `"keep_end"`): |
|
Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`. |
|
This argument is required if you want to use the default data collator. |
|
generate_during_eval (`bool`, *optional*, defaults to `False`): |
|
If `True`, generates and logs completions from both the model and the reference model to W&B or Comet during |
|
evaluation. |
|
is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`): |
|
When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument, |
|
you need to specify if the model returned by the callable is an encoder-decoder model. |
|
precompute_ref_log_probs (`bool`, *optional*, defaults to `False`): |
|
Whether to precompute reference model log probabilities for training and evaluation datasets. This is |
|
useful when training without the reference model to reduce the total GPU memory needed. |
|
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a |
|
string. |
|
ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model |
|
from a string. |
|
dataset_num_proc: (`int` or `None`, *optional*, defaults to `None`): |
|
Number of processes to use for processing the dataset. |
|
disable_dropout (`bool`, *optional*, defaults to `True`): |
|
Whether to disable dropout in the model and reference model. |
|
use_liger_loss (`bool`, *optional*, defaults to `False`): |
|
Whether to use Liger loss. It requires liger-kernel to be installed. |
|
base_model_attribute_name (`str`, *optional*, defaults to `"model"`): |
|
Name of the attribute in the model that contains the base model. This is used to get the base model from |
|
the model when the model does not have a `get_decoder` method in the case when `use_liger_loss` is `True`. |
|
""" |
|
|
|
learning_rate: float = field( |
|
default=1e-6, |
|
metadata={ |
|
"help": "Initial learning rate for `AdamW` optimizer. The default value replaces that of " |
|
"`transformers.TrainingArguments`." |
|
}, |
|
) |
|
max_length: Optional[int] = field( |
|
default=1024, |
|
metadata={"help": "Maximum length of the sequences (prompt + completion) in the batch."}, |
|
) |
|
max_prompt_length: Optional[int] = field( |
|
default=512, |
|
metadata={ |
|
"help": "Maximum length of the prompt. This argument is required if you want to use the default data " |
|
"collator and your model is an encoder-decoder." |
|
}, |
|
) |
|
max_completion_length: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Maximum length of the completion. This argument is required if you want to use the default data " |
|
"collator and your model is an encoder-decoder." |
|
}, |
|
) |
|
beta: float = field( |
|
default=0.1, |
|
metadata={ |
|
"help": "Parameter controlling the deviation from the reference model. Higher Ξ² means less deviation from " |
|
"the reference model." |
|
}, |
|
) |
|
loss_type: str = field( |
|
default="kto", |
|
metadata={ |
|
"help": "Type of loss to use.", |
|
"choices": ["kto", "apo_zero_unpaired"], |
|
}, |
|
) |
|
desirable_weight: float = field( |
|
default=1.0, |
|
metadata={ |
|
"help": "Desirable losses are weighed by this factor to counter unequal number of desirable and " |
|
"undesirable pairs.", |
|
}, |
|
) |
|
undesirable_weight: float = field( |
|
default=1.0, |
|
metadata={ |
|
"help": "Undesirable losses are weighed by this factor to counter unequal number of desirable and " |
|
"undesirable pairs.", |
|
}, |
|
) |
|
label_pad_token_id: int = field( |
|
default=-100, |
|
metadata={ |
|
"help": "Label pad token id. This argument is required if you want to use the default data collator." |
|
}, |
|
) |
|
padding_value: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "Padding value to use. If `None`, the padding value of the tokenizer is used."}, |
|
) |
|
truncation_mode: str = field( |
|
default="keep_end", |
|
metadata={ |
|
"help": "Truncation mode to use when the prompt is too long.", |
|
"choices": ["keep_end", "keep_start"], |
|
}, |
|
) |
|
generate_during_eval: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "If `True`, generates and logs completions from both the model and the reference model to W&B " |
|
"during evaluation." |
|
}, |
|
) |
|
is_encoder_decoder: Optional[bool] = field( |
|
default=None, |
|
metadata={ |
|
"help": "When using the `model_init` argument (callable) to instantiate the model instead of the `model` " |
|
"argument, you need to specify if the model returned by the callable is an encoder-decoder model." |
|
}, |
|
) |
|
disable_dropout: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to disable dropout in the model."}, |
|
) |
|
precompute_ref_log_probs: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to precompute reference model log probabilities for training and evaluation datasets. " |
|
"This is useful when training without the reference model to reduce the total GPU memory needed." |
|
}, |
|
) |
|
model_init_kwargs: Optional[dict[str, Any]] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model " |
|
"from a string." |
|
}, |
|
) |
|
ref_model_init_kwargs: Optional[dict[str, Any]] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the " |
|
"reference model from a string." |
|
}, |
|
) |
|
dataset_num_proc: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "Number of processes to use for processing the dataset."}, |
|
) |
|
use_liger_loss: bool = field( |
|
default=False, |
|
metadata={"help": "Whether to use Liger loss. It requires liger-kernel to be installed."}, |
|
) |
|
base_model_attribute_name: str = field( |
|
default="model", |
|
metadata={ |
|
"help": "Name of the attribute in the model that contains the base model. This is used to get the base " |
|
"model from the model when the model does not have a `get_decoder` method in the case when " |
|
"`use_liger_loss` is `True`." |
|
}, |
|
) |
|
|