|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import os |
|
import random |
|
import textwrap |
|
import warnings |
|
from collections import defaultdict |
|
from contextlib import contextmanager, nullcontext |
|
from copy import deepcopy |
|
from operator import itemgetter |
|
from typing import TYPE_CHECKING, Any, Callable, Literal, Optional, Union |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
import torch.amp as amp |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import transformers |
|
from accelerate import PartialState |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import is_deepspeed_available, tqdm |
|
from datasets import Dataset |
|
from packaging import version |
|
from torch.utils.data import DataLoader, SequentialSampler |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
BaseImageProcessor, |
|
DataCollator, |
|
FeatureExtractionMixin, |
|
PreTrainedModel, |
|
PreTrainedTokenizerBase, |
|
ProcessorMixin, |
|
Trainer, |
|
TrainingArguments, |
|
is_comet_available, |
|
is_sklearn_available, |
|
is_wandb_available, |
|
) |
|
from transformers.trainer_callback import TrainerCallback |
|
from transformers.trainer_utils import EvalLoopOutput, has_length |
|
from transformers.utils import is_peft_available |
|
|
|
from ..data_utils import maybe_apply_chat_template |
|
from ..import_utils import is_joblib_available |
|
from ..models import PreTrainedModelWrapper, create_reference_model |
|
from .bco_config import BCOConfig |
|
from .utils import ( |
|
DPODataCollatorWithPadding, |
|
RunningMoments, |
|
disable_dropout_in_model, |
|
generate_model_card, |
|
get_comet_experiment_url, |
|
log_table_to_comet_experiment, |
|
pad_to_length, |
|
peft_module_casting_to_bf16, |
|
selective_log_softmax, |
|
) |
|
|
|
|
|
if is_peft_available(): |
|
from peft import PeftModel, get_peft_model, prepare_model_for_kbit_training |
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
if is_sklearn_available(): |
|
from sklearn.linear_model import LogisticRegression |
|
|
|
if is_joblib_available(): |
|
import joblib |
|
|
|
if is_deepspeed_available(): |
|
import deepspeed |
|
|
|
if TYPE_CHECKING: |
|
from transformers import PreTrainedModel, PreTrainedTokenizer |
|
|
|
logger = get_logger(__name__) |
|
|
|
RUNNING_NAME = "running.json" |
|
CLF_NAME = "clf.pkl" |
|
|
|
|
|
def _tokenize( |
|
batch: dict[str, list[Any]], |
|
tokenizer: "PreTrainedTokenizer", |
|
embedding_tokenizer: Optional["PreTrainedTokenizer"] = None, |
|
) -> dict[str, list[Any]]: |
|
"""Tokenize a batch from a BCO specific dataset.""" |
|
prompt_tokenized = tokenizer(batch["prompt"], add_special_tokens=False) |
|
prompt_input_ids = prompt_tokenized["input_ids"] |
|
prompt_attention_mask = prompt_tokenized["attention_mask"] |
|
prompt_and_completion = [prompt + completion for prompt, completion in zip(batch["prompt"], batch["completion"])] |
|
full_tokenized = tokenizer(prompt_and_completion, add_special_tokens=False) |
|
full_input_ids = full_tokenized["input_ids"] |
|
full_attention_mask = full_tokenized["attention_mask"] |
|
|
|
answer_input_ids = [f[len(p) :] for f, p in zip(full_input_ids, prompt_input_ids)] |
|
answer_attention_mask = [f[len(p) :] for f, p in zip(full_attention_mask, prompt_attention_mask)] |
|
|
|
|
|
full_concat_input_ids = [np.concatenate([p, a]) for p, a in zip(prompt_input_ids, answer_input_ids)] |
|
|
|
full_input_ids = [np.array(f) for f in full_input_ids] |
|
for full, concat in zip(full_input_ids, full_concat_input_ids): |
|
if len(full) != len(concat): |
|
raise ValueError( |
|
"The elements in 'full_input_ids' and 'full_concat_input_ids' must have the same pairwise length." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
response_token_ids_start_idx = [len(p) for p in prompt_input_ids] |
|
|
|
|
|
|
|
for idx, (p, f, r) in enumerate(zip(prompt_input_ids, full_input_ids, response_token_ids_start_idx)): |
|
if not np.array_equal(p, f[:r]): |
|
response_token_ids_start_idx[idx] -= 1 |
|
|
|
prompt_input_ids = [f[:r] for f, r in zip(full_input_ids, response_token_ids_start_idx)] |
|
prompt_attention_mask = [f[:r] for f, r in zip(full_attention_mask, response_token_ids_start_idx)] |
|
|
|
for p, m in zip(prompt_input_ids, prompt_attention_mask): |
|
if len(p) != len(m): |
|
raise ValueError("Prompt input ids and attention mask should have the same length.") |
|
|
|
answer_input_ids = [f[r:] for f, r in zip(full_input_ids, response_token_ids_start_idx)] |
|
answer_attention_mask = [f[r:] for f, r in zip(full_attention_mask, response_token_ids_start_idx)] |
|
|
|
output = dict( |
|
prompt_input_ids=prompt_input_ids, |
|
prompt_attention_mask=prompt_attention_mask, |
|
answer_input_ids=answer_input_ids, |
|
answer_attention_mask=answer_attention_mask, |
|
) |
|
|
|
if embedding_tokenizer is not None: |
|
embedding_tokenized = embedding_tokenizer(batch["prompt"], truncation=True, add_special_tokens=False) |
|
|
|
output.update( |
|
{ |
|
"embedding_input_ids": embedding_tokenized["input_ids"], |
|
"embedding_attention_mask": embedding_tokenized["attention_mask"], |
|
} |
|
) |
|
|
|
return output |
|
|
|
|
|
def _process_tokens(example: dict[str, Any], model: "PreTrainedModel" = None, **kwargs) -> dict: |
|
"""Process tokens of a BCO specific dataset. |
|
|
|
At this stage, we don't convert to PyTorch tensors yet; we just handle the truncation |
|
in case the prompt + completion responses is/are too long. First |
|
we truncate the prompt; if we're still too long, we truncate the completion. |
|
|
|
We also create the labels for the completion responses, which are of length equal to |
|
the sum of the length of the prompt and the completion response, with |
|
label_pad_token_id for the prompt tokens. |
|
""" |
|
prompt = example["prompt"] |
|
completion = example["completion"] |
|
|
|
batch = { |
|
f"{kwargs['prefix']}prompt": prompt, |
|
f"{kwargs['prefix']}completion": completion, |
|
f"{kwargs['prefix']}label": example["label"], |
|
} |
|
|
|
if not kwargs["is_encoder_decoder"]: |
|
|
|
|
|
|
|
|
|
|
|
if not isinstance(prompt, str): |
|
raise ValueError(f"prompt should be an str but got {type(prompt)}") |
|
|
|
if not isinstance(completion, str): |
|
raise ValueError(f"completion should be an str but got {type(completion)}") |
|
|
|
|
|
all_tokens = { |
|
"prompt_input_ids": example["prompt_input_ids"], |
|
"prompt_attention_mask": example["prompt_attention_mask"], |
|
"answer_input_ids": example["answer_input_ids"], |
|
"answer_attention_mask": example["answer_attention_mask"], |
|
} |
|
|
|
|
|
max_length = kwargs["max_length"] |
|
bos_token_id = kwargs["tokenizer"].bos_token_id |
|
eos_token_id = kwargs["tokenizer"].eos_token_id |
|
if bos_token_id != all_tokens["prompt_input_ids"][0]: |
|
max_length -= 1 |
|
if eos_token_id != all_tokens["answer_input_ids"][-1]: |
|
max_length -= 1 |
|
|
|
|
|
if len(all_tokens["prompt_input_ids"]) + len(all_tokens["answer_input_ids"]) > max_length: |
|
for k in ["prompt_input_ids", "prompt_attention_mask"]: |
|
if kwargs["truncation_mode"] == "keep_start": |
|
all_tokens[k] = all_tokens[k][: kwargs["max_prompt_length"]] |
|
elif kwargs["truncation_mode"] == "keep_end": |
|
all_tokens[k] = all_tokens[k][-kwargs["max_prompt_length"] :] |
|
else: |
|
raise ValueError(f"Unknown truncation mode: {kwargs['truncation_mode']}") |
|
|
|
|
|
if len(all_tokens["prompt_input_ids"]) + len(all_tokens["answer_input_ids"]) > max_length: |
|
for k in ["answer_input_ids", "answer_attention_mask"]: |
|
all_tokens[k] = all_tokens[k][: max_length - kwargs["max_prompt_length"]] |
|
|
|
|
|
batch[f"{kwargs['prefix']}prompt_input_ids"] = all_tokens["prompt_input_ids"] |
|
batch[f"{kwargs['prefix']}prompt_attention_mask"] = all_tokens["prompt_attention_mask"] |
|
batch[f"{kwargs['prefix']}completion_input_ids"] = ( |
|
all_tokens["prompt_input_ids"] + all_tokens["answer_input_ids"] |
|
) |
|
batch[f"{kwargs['prefix']}completion_attention_mask"] = ( |
|
all_tokens["prompt_attention_mask"] + all_tokens["answer_attention_mask"] |
|
) |
|
|
|
|
|
if bos_token_id is not None: |
|
if len(all_tokens["prompt_input_ids"]) == 0 or bos_token_id != all_tokens["prompt_input_ids"][0]: |
|
batch[f"{kwargs['prefix']}prompt_input_ids"] = [bos_token_id] + batch[ |
|
f"{kwargs['prefix']}prompt_input_ids" |
|
] |
|
batch[f"{kwargs['prefix']}prompt_attention_mask"] = [1] + batch[ |
|
f"{kwargs['prefix']}prompt_attention_mask" |
|
] |
|
batch[f"{kwargs['prefix']}completion_input_ids"] = [bos_token_id] + batch[ |
|
f"{kwargs['prefix']}completion_input_ids" |
|
] |
|
batch[f"{kwargs['prefix']}completion_attention_mask"] = [1] + batch[ |
|
f"{kwargs['prefix']}completion_attention_mask" |
|
] |
|
|
|
if len(all_tokens["answer_input_ids"]) == 0 or eos_token_id != all_tokens["answer_input_ids"][-1]: |
|
batch[f"{kwargs['prefix']}completion_input_ids"] = batch[f"{kwargs['prefix']}completion_input_ids"] + [ |
|
eos_token_id |
|
] |
|
batch[f"{kwargs['prefix']}completion_attention_mask"] = batch[ |
|
f"{kwargs['prefix']}completion_attention_mask" |
|
] + [1] |
|
|
|
batch[f"{kwargs['prefix']}completion_labels"] = batch[f"{kwargs['prefix']}completion_input_ids"][:] |
|
batch[f"{kwargs['prefix']}completion_labels"][: len(batch[f"{kwargs['prefix']}prompt_input_ids"])] = [ |
|
kwargs["label_pad_token_id"] |
|
] * len(batch[f"{kwargs['prefix']}prompt_input_ids"]) |
|
else: |
|
completion_tokens = kwargs["tokenizer"]( |
|
completion, truncation=True, max_length=kwargs["max_completion_length"], add_special_tokens=True |
|
) |
|
prompt_tokens = kwargs["tokenizer"]( |
|
prompt, truncation=True, max_length=kwargs["max_prompt_length"], add_special_tokens=True |
|
) |
|
|
|
batch[f"{kwargs['prefix']}prompt_input_ids"] = prompt_tokens["input_ids"] |
|
batch[f"{kwargs['prefix']}prompt_attention_mask"] = prompt_tokens["attention_mask"] |
|
|
|
batch[f"{kwargs['prefix']}completion_labels"] = completion_tokens["input_ids"] |
|
batch[f"{kwargs['prefix']}completion_attention_mask"] = completion_tokens["attention_mask"] |
|
if model is not None and hasattr(model, "prepare_decoder_input_ids_from_labels"): |
|
batch[f"{kwargs['prefix']}completion_decoder_input_ids"] = model.prepare_decoder_input_ids_from_labels( |
|
labels=torch.tensor(batch["completion_labels"]) |
|
) |
|
|
|
return batch |
|
|
|
|
|
class BCOTrainer(Trainer): |
|
r""" |
|
Initialize BCOTrainer from [BCO](https://huggingface.co/papers/2404.04656) paper. |
|
|
|
Args: |
|
model (`transformers.PreTrainedModel`): |
|
The model to train, preferably an `AutoModelForSequenceClassification`. |
|
ref_model (`PreTrainedModelWrapper`): |
|
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no |
|
reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized. |
|
args (`BCOConfig`): |
|
The arguments to use for training. |
|
train_dataset (`datasets.Dataset`): |
|
The dataset to use for training. |
|
eval_dataset (`datasets.Dataset`): |
|
The dataset to use for evaluation. |
|
processing_class (`PreTrainedTokenizerBase` or `BaseImageProcessor` or `FeatureExtractionMixin` or `ProcessorMixin`, *optional*): |
|
Processing class used to process the data. If provided, will be used to automatically process the inputs |
|
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or |
|
reuse the fine-tuned model. |
|
data_collator (`transformers.DataCollator`, *optional*, defaults to `None`): |
|
The data collator to use for training. If None is specified, the default data collator (`DPODataCollatorWithPadding`) will be used |
|
which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. |
|
model_init (`Callable[[], transformers.PreTrainedModel]`): |
|
The model initializer to use for training. If None is specified, the default model initializer will be used. |
|
callbacks (`list[transformers.TrainerCallback]`): |
|
The callbacks to use for training. |
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): |
|
The optimizer and scheduler to use for training. |
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): |
|
The function to use to preprocess the logits before computing the metrics. |
|
peft_config (`dict`, defaults to `None`): |
|
The PEFT configuration to use for training. If you pass a PEFT configuration, the model will be wrapped in a PEFT model. |
|
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): |
|
The function to use to compute the metrics. Must take a `EvalPrediction` and return |
|
a dictionary string to metric values. |
|
model_adapter_name (`str`, defaults to `None`): |
|
Name of the train target PEFT adapter, when using LoRA with multiple adapters. |
|
ref_adapter_name (`str`, defaults to `None`): |
|
Name of the reference PEFT adapter, when using LoRA with multiple adapters. |
|
""" |
|
|
|
_tag_names = ["trl", "bco"] |
|
|
|
def __init__( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module, str] = None, |
|
ref_model: Optional[Union[PreTrainedModel, nn.Module, str]] = None, |
|
args: BCOConfig = None, |
|
train_dataset: Optional[Dataset] = None, |
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, |
|
processing_class: Optional[ |
|
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] |
|
] = None, |
|
data_collator: Optional[DataCollator] = None, |
|
model_init: Optional[Callable[[], PreTrainedModel]] = None, |
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), |
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
peft_config: Optional[dict] = None, |
|
compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None, |
|
model_adapter_name: Optional[str] = None, |
|
ref_adapter_name: Optional[str] = None, |
|
embedding_func: Optional[Callable] = None, |
|
embedding_tokenizer: Optional[PreTrainedTokenizerBase] = None, |
|
): |
|
if embedding_func is not None and not (is_sklearn_available() and is_joblib_available()): |
|
raise ImportError( |
|
"BCOTrainer with UDM requires the scikit-learn and joblib libraries. Please install it with `pip install scikit-learn joblib`." |
|
) |
|
|
|
if type(args) is TrainingArguments: |
|
raise ValueError("Please use `BCOConfig` instead `TrainingArguments`.") |
|
|
|
if not isinstance(model, str) and model is not None and ref_model is model: |
|
raise ValueError( |
|
"`model` and `ref_model` cannot be the same object. If you want `ref_model` to be the " |
|
"same as `model`, you must mass a copy of it, or `None` if you use peft." |
|
) |
|
|
|
if args.model_init_kwargs is None: |
|
model_init_kwargs = {} |
|
elif not isinstance(model, str): |
|
raise ValueError("You passed model_kwargs to the BCOTrainer. But your model is already instantiated.") |
|
else: |
|
model_init_kwargs = args.model_init_kwargs |
|
torch_dtype = model_init_kwargs.get("torch_dtype") |
|
if torch_dtype is not None: |
|
|
|
if isinstance(torch_dtype, str) and torch_dtype != "auto": |
|
torch_dtype = getattr(torch, torch_dtype) |
|
if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): |
|
raise ValueError( |
|
f"Invalid `torch_dtype` passed to the BCOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." |
|
) |
|
model_init_kwargs["torch_dtype"] = torch_dtype |
|
|
|
if args.ref_model_init_kwargs is None: |
|
ref_model_init_kwargs = {} |
|
elif not isinstance(ref_model, str): |
|
raise ValueError( |
|
"You passed ref_model_kwargs to the BCOTrainer. But your ref_model is already instantiated." |
|
) |
|
else: |
|
ref_model_init_kwargs = args.ref_model_init_kwargs |
|
torch_dtype = ref_model_init_kwargs.get("torch_dtype") |
|
if torch_dtype is not None: |
|
|
|
if isinstance(torch_dtype, str) and torch_dtype != "auto": |
|
torch_dtype = getattr(torch, torch_dtype) |
|
if torch_dtype != "auto" and not isinstance(torch_dtype, torch.dtype): |
|
raise ValueError( |
|
f"Invalid `torch_dtype` passed to the BCOConfig. Expected a string with either `torch.dtype` or 'auto', but got {torch_dtype}." |
|
) |
|
ref_model_init_kwargs["torch_dtype"] = torch_dtype |
|
|
|
if isinstance(model, str): |
|
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs) |
|
|
|
if isinstance(ref_model, str): |
|
ref_model = AutoModelForCausalLM.from_pretrained(ref_model, **ref_model_init_kwargs) |
|
|
|
|
|
|
|
self._peft_has_been_casted_to_bf16 = False |
|
|
|
if not is_peft_available() and peft_config is not None: |
|
raise ValueError( |
|
"PEFT is not installed and you passed a `peft_config` in the trainer's kwargs, please install it with `pip install peft` to use the PEFT models" |
|
) |
|
elif is_peft_available() and peft_config is not None: |
|
|
|
if isinstance(model, PeftModel): |
|
model = model.merge_and_unload() |
|
|
|
if getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False): |
|
_support_gc_kwargs = hasattr( |
|
args, "gradient_checkpointing_kwargs" |
|
) and "gradient_checkpointing_kwargs" in list( |
|
inspect.signature(prepare_model_for_kbit_training).parameters |
|
) |
|
|
|
prepare_model_kwargs = {"use_gradient_checkpointing": args.gradient_checkpointing} |
|
|
|
if _support_gc_kwargs: |
|
prepare_model_kwargs["gradient_checkpointing_kwargs"] = args.gradient_checkpointing_kwargs |
|
|
|
model = prepare_model_for_kbit_training(model, **prepare_model_kwargs) |
|
elif getattr(args, "gradient_checkpointing", False): |
|
|
|
if hasattr(model, "enable_input_require_grads"): |
|
model.enable_input_require_grads() |
|
else: |
|
|
|
def make_inputs_require_grad(module, input, output): |
|
output.requires_grad_(True) |
|
|
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
|
|
model = get_peft_model(model, peft_config) |
|
if args.bf16 and getattr(model, "is_loaded_in_4bit", False): |
|
peft_module_casting_to_bf16(model) |
|
|
|
self._peft_has_been_casted_to_bf16 = True |
|
|
|
|
|
|
|
|
|
elif getattr(args, "gradient_checkpointing", False): |
|
|
|
if hasattr(model, "enable_input_require_grads"): |
|
model.enable_input_require_grads() |
|
else: |
|
|
|
def make_inputs_require_grad(module, input, output): |
|
output.requires_grad_(True) |
|
|
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
if args.generate_during_eval and not (is_wandb_available() or is_comet_available()): |
|
raise ValueError( |
|
"`generate_during_eval=True` requires Weights and Biases or Comet to be installed." |
|
" Please install `wandb` or `comet-ml` to resolve." |
|
) |
|
|
|
if model is not None: |
|
self.is_encoder_decoder = model.config.is_encoder_decoder |
|
elif args.is_encoder_decoder is None: |
|
raise ValueError("When no model is provided, you need to pass the parameter is_encoder_decoder.") |
|
else: |
|
self.is_encoder_decoder = args.is_encoder_decoder |
|
|
|
self.is_peft_model = is_peft_available() and isinstance(model, PeftModel) |
|
self.model_adapter_name = model_adapter_name |
|
self.ref_adapter_name = ref_adapter_name |
|
|
|
if ref_model: |
|
self.ref_model = ref_model |
|
elif self.is_peft_model or args.precompute_ref_log_probs: |
|
|
|
self.ref_model = None |
|
else: |
|
self.ref_model = create_reference_model(model) |
|
|
|
if processing_class is None: |
|
raise ValueError( |
|
"max_length or a processing_class must be specified when using the default DPODataCollatorWithPadding" |
|
) |
|
if args.max_length is None: |
|
warnings.warn( |
|
"When using DPODataCollatorWithPadding, you should set `max_length` in the `BCOConfig`. " |
|
"It will be set to `512` by default, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
max_length = 512 |
|
if args.max_length is not None: |
|
max_length = args.max_length |
|
|
|
if args.max_prompt_length is None: |
|
warnings.warn( |
|
"When using DPODataCollatorWithPadding, you should set `max_prompt_length` in the `BCOConfig`. " |
|
"It will be set to `128` by default, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
max_prompt_length = 128 |
|
if args.max_prompt_length is not None: |
|
max_prompt_length = args.max_prompt_length |
|
|
|
max_completion_length = None |
|
if args.max_completion_length is None and self.is_encoder_decoder: |
|
warnings.warn( |
|
"When using DPODataCollatorWithPadding with an encoder decoder architecture, you should set `max_completion_length` in the BCOTrainer's init" |
|
" it will be set to `128` by default, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
max_completion_length = 128 |
|
if args.max_completion_length is not None and self.is_encoder_decoder: |
|
max_completion_length = args.max_completion_length |
|
|
|
if data_collator is None: |
|
data_collator = DPODataCollatorWithPadding( |
|
pad_token_id=processing_class.pad_token_id, |
|
label_pad_token_id=args.label_pad_token_id, |
|
is_encoder_decoder=self.is_encoder_decoder, |
|
) |
|
|
|
if args.remove_unused_columns: |
|
args.remove_unused_columns = False |
|
|
|
warnings.warn( |
|
"When using DPODataCollatorWithPadding, you should set `remove_unused_columns=False` in your BCOConfig" |
|
" we have set it for you, but you should do it yourself in the future.", |
|
UserWarning, |
|
) |
|
|
|
self.use_dpo_data_collator = True |
|
else: |
|
self.use_dpo_data_collator = False |
|
|
|
|
|
if args.disable_dropout: |
|
disable_dropout_in_model(model) |
|
if self.ref_model is not None: |
|
disable_dropout_in_model(self.ref_model) |
|
|
|
self.max_length = max_length |
|
self.generate_during_eval = args.generate_during_eval |
|
self.label_pad_token_id = args.label_pad_token_id |
|
self.padding_value = args.padding_value if args.padding_value is not None else processing_class.pad_token_id |
|
self.max_prompt_length = max_prompt_length |
|
self.truncation_mode = args.truncation_mode |
|
self.max_completion_length = max_completion_length |
|
self.precompute_ref_log_probs = args.precompute_ref_log_probs |
|
|
|
|
|
|
|
self._precomputed_train_ref_log_probs = False |
|
self._precomputed_eval_ref_log_probs = False |
|
|
|
|
|
self._stored_metrics = defaultdict(lambda: defaultdict(list)) |
|
|
|
|
|
self.beta = args.beta |
|
self.aux_loss_enabled = getattr(model.config, "output_router_logits", False) |
|
self.aux_loss_coef = getattr(model.config, "router_aux_loss_coef", 0.0) |
|
if self.aux_loss_enabled and self.aux_loss_coef == 0.0: |
|
warnings.warn( |
|
"You set `output_router_logits` to `True` in the model config, but `router_aux_loss_coef` is set to " |
|
"`0.0`, meaning the auxiliary loss will not be used. Either set `router_aux_loss_coef` to a value " |
|
"greater than `0.0`, or set `output_router_logits` to `False` if you don't want to use the auxiliary " |
|
"loss.", |
|
UserWarning, |
|
) |
|
|
|
|
|
self.embedding_func = embedding_func |
|
self.embedding_tokenizer = embedding_tokenizer |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.warnings_issued["estimate_tokens"] = True |
|
|
|
with PartialState().main_process_first(): |
|
|
|
train_dataset = train_dataset.map( |
|
maybe_apply_chat_template, fn_kwargs={"tokenizer": processing_class}, num_proc=args.dataset_num_proc |
|
) |
|
if eval_dataset is not None: |
|
eval_dataset = eval_dataset.map( |
|
maybe_apply_chat_template, |
|
fn_kwargs={"tokenizer": processing_class}, |
|
num_proc=args.dataset_num_proc, |
|
) |
|
|
|
|
|
train_dataset = train_dataset.map( |
|
_tokenize, |
|
batched=True, |
|
fn_kwargs={"tokenizer": processing_class, "embedding_tokenizer": self.embedding_tokenizer}, |
|
num_proc=args.dataset_num_proc, |
|
desc="Tokenizing train dataset", |
|
) |
|
|
|
|
|
fn_kwargs = { |
|
"prefix": "", |
|
"is_encoder_decoder": self.is_encoder_decoder, |
|
"tokenizer": processing_class, |
|
"max_length": self.max_length, |
|
"truncation_mode": self.truncation_mode, |
|
"label_pad_token_id": self.label_pad_token_id, |
|
"max_prompt_length": self.max_prompt_length, |
|
"max_completion_length": self.max_completion_length, |
|
} |
|
train_dataset = train_dataset.map( |
|
_process_tokens, |
|
fn_kwargs=fn_kwargs, |
|
num_proc=args.dataset_num_proc, |
|
desc="Processing tokenized train dataset", |
|
) |
|
|
|
if eval_dataset is not None: |
|
|
|
eval_dataset = eval_dataset.map( |
|
_tokenize, |
|
fn_kwargs={"tokenizer": processing_class, "embedding_tokenizer": self.embedding_tokenizer}, |
|
batched=True, |
|
num_proc=args.dataset_num_proc, |
|
desc="Tokenizing eval dataset", |
|
) |
|
|
|
|
|
fn_kwargs = { |
|
"prefix": "", |
|
"is_encoder_decoder": self.is_encoder_decoder, |
|
"tokenizer": processing_class, |
|
"max_length": self.max_length, |
|
"truncation_mode": self.truncation_mode, |
|
"label_pad_token_id": self.label_pad_token_id, |
|
"max_prompt_length": self.max_prompt_length, |
|
"max_completion_length": self.max_completion_length, |
|
} |
|
eval_dataset = eval_dataset.map( |
|
_process_tokens, |
|
fn_kwargs=fn_kwargs, |
|
num_proc=args.dataset_num_proc, |
|
desc="Processing tokenized eval dataset", |
|
) |
|
|
|
desirable = train_dataset.filter( |
|
lambda x: x["label"], num_proc=args.dataset_num_proc, desc="Filtering desirable examples" |
|
) |
|
undesirable = train_dataset.filter( |
|
lambda x: not x["label"], num_proc=args.dataset_num_proc, desc="Filtering undesirable examples" |
|
) |
|
|
|
super().__init__( |
|
model=model, |
|
args=args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
processing_class=processing_class, |
|
model_init=model_init, |
|
compute_metrics=compute_metrics, |
|
callbacks=callbacks, |
|
optimizers=optimizers, |
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
) |
|
|
|
|
|
|
|
|
|
self.model_accepts_loss_kwargs = False |
|
|
|
|
|
if hasattr(self.model, "add_model_tags"): |
|
self.model.add_model_tags(self._tag_names) |
|
|
|
if not hasattr(self, "accelerator"): |
|
raise AttributeError( |
|
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." |
|
) |
|
|
|
|
|
if self.is_deepspeed_enabled: |
|
if self.accelerator.state.deepspeed_plugin.zero_stage == 3 and self.precompute_ref_log_probs: |
|
raise ValueError( |
|
"You cannot use `precompute_ref_log_probs=True` with Deepspeed ZeRO-3. Please set `precompute_ref_log_probs=False`." |
|
) |
|
|
|
if self.ref_model is None: |
|
if not (self.is_peft_model or self.precompute_ref_log_probs): |
|
raise ValueError( |
|
"No reference model and model is not a Peft model. Try setting `precompute_ref_log_probs=True`" |
|
) |
|
else: |
|
if self.is_deepspeed_enabled: |
|
self.ref_model = self._prepare_deepspeed(self.ref_model) |
|
else: |
|
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True) |
|
|
|
self.running = RunningMoments(accelerator=self.accelerator) |
|
|
|
if self.embedding_func is None or args.resume_from_checkpoint: |
|
return |
|
|
|
chosen_embeddings = self._get_sample_prompt_embeddings(desirable, sample_size=self.args.prompt_sample_size) |
|
rejected_embeddings = self._get_sample_prompt_embeddings(undesirable, sample_size=self.args.prompt_sample_size) |
|
|
|
embeddings = torch.cat((chosen_embeddings, rejected_embeddings), dim=0) |
|
labels = torch.cat( |
|
(torch.ones_like(chosen_embeddings[:, 0]), torch.zeros_like(rejected_embeddings[:, 0])), dim=0 |
|
) |
|
|
|
self.clf = LogisticRegression(class_weight="balanced").fit( |
|
embeddings.cpu().float().numpy(), labels.cpu().numpy() |
|
) |
|
chosen_mean = self.clf.score( |
|
chosen_embeddings.cpu().float().numpy(), torch.ones_like(chosen_embeddings[:, 0]).cpu().numpy() |
|
) |
|
rejected_mean = self.clf.score( |
|
rejected_embeddings.cpu().float().numpy(), torch.zeros_like(rejected_embeddings[:, 0]).cpu().numpy() |
|
) |
|
logger.info(f"UDM classifier training scores: chosen: {chosen_mean}, rejected: {rejected_mean}") |
|
|
|
@property |
|
def match_underlying_distribution(self): |
|
return self.embedding_func is not None and self.embedding_tokenizer is not None |
|
|
|
def _get_chosen_prob(self, prompt_embeddings: torch.FloatTensor) -> torch.FloatTensor: |
|
""" |
|
Calculates the probability if the given prompt embedding is from desirable dataset. |
|
This function calculates the probability in the process and ensemble across processes. |
|
""" |
|
dtype = prompt_embeddings.dtype |
|
device = prompt_embeddings.device |
|
rank = self.accelerator.process_index |
|
|
|
padded_prompt_embeddings = self.accelerator.pad_across_processes( |
|
prompt_embeddings, pad_index=self.embedding_tokenizer.pad_token_id |
|
) |
|
sample_size = padded_prompt_embeddings.shape[0] |
|
nonzero = padded_prompt_embeddings.mean(dim=1) != self.embedding_tokenizer.pad_token_id |
|
prompt_embeddings = self.accelerator.gather(padded_prompt_embeddings) |
|
|
|
|
|
if prompt_embeddings.shape[0] == 0: |
|
return torch.tensor([], device=device, dtype=dtype) |
|
|
|
prob = self.clf.predict_proba(prompt_embeddings.cpu().float().numpy())[:, 1] |
|
prob = torch.as_tensor(prob, dtype=dtype, device=device) |
|
prob = self.accelerator.reduce(prob, reduction="mean") |
|
|
|
prob = prob[sample_size * rank : sample_size * (rank + 1)] |
|
prob = prob[nonzero] |
|
|
|
return prob |
|
|
|
def _vectorize_prompt(self, input_ids: torch.LongTensor, attention_mask: torch.LongTensor) -> torch.FloatTensor: |
|
""" |
|
Replaces processing_class.pad_token_id to embedding_tokenizer.pad_token_id |
|
and applies self.embedding_func |
|
""" |
|
input_ids = torch.where( |
|
input_ids == self.processing_class.pad_token_id, |
|
self.embedding_tokenizer.pad_token_id, |
|
input_ids, |
|
) |
|
|
|
with torch.no_grad(): |
|
embeddings = self.embedding_func( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
) |
|
|
|
return embeddings |
|
|
|
def _get_prompt_embeddings( |
|
self, batch: dict[str, Union[list, torch.LongTensor]] |
|
) -> tuple[torch.FloatTensor, torch.FloatTensor]: |
|
"""Extract embeddings from frozen embedding model""" |
|
|
|
if not self.match_underlying_distribution: |
|
return None, None |
|
|
|
embeddings = self._vectorize_prompt( |
|
input_ids=batch["embedding_input_ids"], |
|
attention_mask=batch["embedding_attention_mask"], |
|
) |
|
|
|
chosen_idx = [i for i in range(len(batch["label"])) if batch["label"][i] is True] |
|
rejected_idx = [i for i in range(len(batch["label"])) if batch["label"][i] is False] |
|
|
|
chosen_embeddings = embeddings[chosen_idx, ...] |
|
rejected_embeddings = embeddings[rejected_idx, ...] |
|
|
|
return (chosen_embeddings, rejected_embeddings) |
|
|
|
def _get_sample_prompt_embeddings(self, dataset: Dataset, sample_size: int = 512) -> torch.FloatTensor: |
|
""" |
|
Sample instances from dataset and get prompt embeddings. |
|
Used for density ratio classifier training. |
|
""" |
|
n_samples = min(len(dataset), sample_size) |
|
rand_indices = np.random.choice(len(dataset), size=(n_samples,)) |
|
|
|
embedding_dataset = dataset.select(rand_indices) |
|
|
|
dataloader_params = { |
|
"batch_size": self.args.per_device_train_batch_size, |
|
"collate_fn": self.data_collator, |
|
"num_workers": self.args.dataloader_num_workers, |
|
"pin_memory": self.args.dataloader_pin_memory, |
|
"shuffle": False, |
|
} |
|
|
|
|
|
data_loader = self.accelerator.prepare(DataLoader(embedding_dataset, **dataloader_params)) |
|
|
|
with torch.no_grad(): |
|
all_embeddings = torch.empty(0) |
|
for padded_batch in tqdm(iterable=data_loader, desc="Building sample prompt embeddings"): |
|
embeddings = self._vectorize_prompt( |
|
input_ids=padded_batch["embedding_input_ids"], |
|
attention_mask=padded_batch["embedding_attention_mask"], |
|
) |
|
embeddings = self.accelerator.gather_for_metrics(embeddings) |
|
all_embeddings = torch.cat((all_embeddings, embeddings.cpu())) |
|
|
|
return all_embeddings |
|
|
|
def _prepare_deepspeed(self, model: PreTrainedModelWrapper): |
|
|
|
deepspeed_plugin = self.accelerator.state.deepspeed_plugin |
|
config_kwargs = deepcopy(deepspeed_plugin.deepspeed_config) |
|
|
|
if model is not None: |
|
if hasattr(model, "config"): |
|
hidden_size = ( |
|
max(model.config.hidden_sizes) |
|
if getattr(model.config, "hidden_sizes", None) |
|
else getattr(model.config, "hidden_size", None) |
|
) |
|
if hidden_size is not None and config_kwargs["zero_optimization"]["stage"] == 3: |
|
|
|
|
|
config_kwargs.update( |
|
{ |
|
"zero_optimization.reduce_bucket_size": hidden_size * hidden_size, |
|
"zero_optimization.stage3_param_persistence_threshold": 10 * hidden_size, |
|
"zero_optimization.stage3_prefetch_bucket_size": 0.9 * hidden_size * hidden_size, |
|
} |
|
) |
|
|
|
|
|
|
|
if config_kwargs["zero_optimization"]["stage"] != 3: |
|
config_kwargs["zero_optimization"]["stage"] = 0 |
|
model, *_ = deepspeed.initialize(model=model, config=config_kwargs) |
|
model.eval() |
|
return model |
|
|
|
def _save_optimizer_and_scheduler(self, output_dir): |
|
output_dir = output_dir if output_dir is not None else self.args.output_dir |
|
super()._save_optimizer_and_scheduler(output_dir) |
|
|
|
if self.accelerator.is_main_process: |
|
|
|
self.running.save_to_json(os.path.join(output_dir, RUNNING_NAME)) |
|
|
|
if self.match_underlying_distribution: |
|
joblib.dump(self.clf, os.path.join(output_dir, CLF_NAME), compress=True) |
|
|
|
def _load_optimizer_and_scheduler(self, checkpoint): |
|
if checkpoint is None: |
|
logger.warning_once(f"Missing Checkpoint {checkpoint}") |
|
return |
|
|
|
super()._load_optimizer_and_scheduler(checkpoint) |
|
|
|
|
|
running_file = os.path.join(checkpoint, RUNNING_NAME) |
|
if os.path.isfile(running_file): |
|
self.running = RunningMoments.load_from_json(self.accelerator, running_file) |
|
|
|
if self.match_underlying_distribution: |
|
clf_file = os.path.join(checkpoint, CLF_NAME) |
|
if os.path.isfile(clf_file): |
|
self.clf = joblib.load(clf_file) |
|
|
|
@contextmanager |
|
def null_ref_context(self): |
|
"""Context manager for handling null reference model (that is, peft adapter manipulation).""" |
|
with ( |
|
self.accelerator.unwrap_model(self.model).disable_adapter() |
|
if self.is_peft_model and not self.ref_adapter_name |
|
else nullcontext() |
|
): |
|
if self.ref_adapter_name: |
|
self.model.set_adapter(self.ref_adapter_name) |
|
yield |
|
if self.ref_adapter_name: |
|
self.model.set_adapter(self.model_adapter_name or "default") |
|
|
|
def get_train_dataloader(self) -> DataLoader: |
|
""" |
|
Returns the training [`~torch.utils.data.DataLoader`]. |
|
|
|
Subclass of transformers.src.transformers.trainer.get_train_dataloader to precompute `ref_log_probs`. |
|
""" |
|
|
|
if self.precompute_ref_log_probs and not self._precomputed_train_ref_log_probs: |
|
dataloader_params = { |
|
"batch_size": self.args.per_device_train_batch_size, |
|
"collate_fn": self.data_collator, |
|
"num_workers": self.args.dataloader_num_workers, |
|
"pin_memory": self.args.dataloader_pin_memory, |
|
"shuffle": False, |
|
} |
|
|
|
|
|
data_loader = self.accelerator.prepare(DataLoader(self.train_dataset, **dataloader_params)) |
|
reference_completion_logps = [] |
|
|
|
for padded_batch in tqdm(iterable=data_loader, desc="Train dataset reference log probs"): |
|
reference_completion_logp = self.compute_reference_log_probs(padded_batch) |
|
|
|
reference_completion_logp = self.accelerator.gather_for_metrics(reference_completion_logp) |
|
reference_completion_logps.append(reference_completion_logp.cpu()) |
|
|
|
self.train_dataset = self.train_dataset.add_column( |
|
name="reference_logps", column=torch.cat(reference_completion_logps).float().numpy() |
|
) |
|
|
|
self._precomputed_train_ref_log_probs = True |
|
|
|
return super().get_train_dataloader() |
|
|
|
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader: |
|
""" |
|
Returns the evaluation [`~torch.utils.data.DataLoader`]. |
|
|
|
Subclass of transformers.src.transformers.trainer.get_eval_dataloader to precompute `ref_log_probs`. |
|
|
|
Args: |
|
eval_dataset (`torch.utils.data.Dataset`, *optional*): |
|
If provided, will override `self.eval_dataset`. If it is a [`~datasets.Dataset`], columns not accepted |
|
by the `model.forward()` method are automatically removed. It must implement `__len__`. |
|
""" |
|
if eval_dataset is None and self.eval_dataset is None: |
|
raise ValueError("Trainer: evaluation requires an eval_dataset.") |
|
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset |
|
|
|
if self.precompute_ref_log_probs and not self._precomputed_eval_ref_log_probs: |
|
dataloader_params = { |
|
"batch_size": self.args.per_device_eval_batch_size, |
|
"collate_fn": self.data_collator, |
|
"num_workers": self.args.dataloader_num_workers, |
|
"pin_memory": self.args.dataloader_pin_memory, |
|
"shuffle": False, |
|
} |
|
|
|
|
|
data_loader = self.accelerator.prepare(DataLoader(eval_dataset, **dataloader_params)) |
|
|
|
reference_completion_logps = [] |
|
|
|
for padded_batch in tqdm(iterable=data_loader, desc="Eval dataset reference log probs"): |
|
reference_completion_logp = self.compute_reference_log_probs(padded_batch) |
|
|
|
reference_completion_logp = self.accelerator.gather_for_metrics(reference_completion_logp) |
|
reference_completion_logps.append(reference_completion_logp.cpu()) |
|
|
|
eval_dataset = eval_dataset.add_column( |
|
name="reference_logps", column=torch.cat(reference_completion_logps).float().numpy() |
|
) |
|
|
|
|
|
if self.eval_dataset is not None: |
|
self.eval_dataset = eval_dataset |
|
self._precomputed_eval_ref_log_probs = True |
|
|
|
return super().get_eval_dataloader(eval_dataset=eval_dataset) |
|
|
|
def compute_reference_log_probs(self, padded_batch: dict) -> dict: |
|
"""Computes log probabilities of the reference model for a single padded batch of a BCO specific dataset.""" |
|
with torch.no_grad(): |
|
if self.ref_model is None: |
|
with self.null_ref_context(): |
|
if self.is_encoder_decoder: |
|
completion_logits = self.model( |
|
padded_batch["prompt_input_ids"], |
|
attention_mask=padded_batch["prompt_attention_mask"], |
|
decoder_input_ids=padded_batch.get("completion_decoder_input_ids"), |
|
labels=padded_batch["completion_labels"], |
|
).logits |
|
|
|
else: |
|
completion_logits = self.model( |
|
padded_batch["completion_input_ids"], |
|
attention_mask=padded_batch["completion_attention_mask"], |
|
).logits |
|
|
|
else: |
|
if self.is_encoder_decoder: |
|
completion_logits = self.ref_model( |
|
padded_batch["prompt_input_ids"], |
|
attention_mask=padded_batch["prompt_attention_mask"], |
|
decoder_input_ids=padded_batch.get("completion_decoder_input_ids"), |
|
labels=padded_batch["completion_labels"], |
|
).logits |
|
|
|
else: |
|
completion_logits = self.ref_model( |
|
padded_batch["completion_input_ids"], attention_mask=padded_batch["completion_attention_mask"] |
|
).logits |
|
|
|
completion_logps = self.get_batch_logps( |
|
completion_logits, |
|
padded_batch["completion_labels"], |
|
average_log_prob=False, |
|
is_encoder_decoder=self.is_encoder_decoder, |
|
label_pad_token_id=self.label_pad_token_id, |
|
) |
|
|
|
return completion_logps |
|
|
|
@staticmethod |
|
def get_batch_logps( |
|
logits: torch.FloatTensor, |
|
labels: torch.LongTensor, |
|
average_log_prob: bool = False, |
|
label_pad_token_id: int = -100, |
|
is_encoder_decoder: bool = False, |
|
) -> torch.FloatTensor: |
|
"""Compute the log probabilities of the given labels under the given logits. |
|
|
|
Args: |
|
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size) |
|
labels: Labels for which to compute the log probabilities. Label tokens with a value of label_pad_token_id are ignored. Shape: (batch_size, sequence_length) |
|
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens. |
|
|
|
Returns: |
|
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits. |
|
""" |
|
if logits.shape[:-1] != labels.shape: |
|
raise ValueError("Logits (batch and sequence length dim) and labels must have the same shape.") |
|
|
|
if not is_encoder_decoder: |
|
labels = labels[:, 1:].clone() |
|
logits = logits[:, :-1, :] |
|
else: |
|
|
|
labels = labels.clone() |
|
|
|
loss_mask = labels != label_pad_token_id |
|
|
|
|
|
labels[labels == label_pad_token_id] = 0 |
|
|
|
per_token_logps = selective_log_softmax(logits, labels) |
|
|
|
if average_log_prob: |
|
return (per_token_logps * loss_mask).sum(-1) / loss_mask.sum(-1) |
|
else: |
|
return (per_token_logps * loss_mask).sum(-1) |
|
|
|
def forward( |
|
self, model: nn.Module, batch: dict[str, Union[list, torch.LongTensor]] |
|
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: |
|
model_kwargs = ( |
|
{ |
|
"labels": batch["completion_labels"], |
|
"decoder_input_ids": batch.get("completion_decoder_input_ids"), |
|
} |
|
if self.is_encoder_decoder |
|
else {} |
|
) |
|
if self.aux_loss_enabled: |
|
model_kwargs["output_router_logits"] = True |
|
|
|
outputs = model( |
|
batch["completion_input_ids"], |
|
attention_mask=batch["completion_attention_mask"], |
|
**model_kwargs, |
|
) |
|
completion_logits = outputs.logits |
|
|
|
completion_logps = self.get_batch_logps( |
|
completion_logits, |
|
batch["completion_labels"], |
|
average_log_prob=False, |
|
is_encoder_decoder=self.is_encoder_decoder, |
|
label_pad_token_id=self.label_pad_token_id, |
|
) |
|
|
|
if completion_logps.shape[0] != len(batch["label"]): |
|
raise ValueError( |
|
"There is a mismatch between the number of examples in this batch and the number of " |
|
"examples for which an output sequence was predicted." |
|
) |
|
|
|
chosen_idx = [i for i in range(completion_logps.shape[0]) if batch["label"][i] is True] |
|
rejected_idx = [i for i in range(completion_logps.shape[0]) if batch["label"][i] is False] |
|
|
|
chosen_logps = completion_logps[chosen_idx, ...] |
|
rejected_logps = completion_logps[rejected_idx, ...] |
|
|
|
chosen_logits = completion_logits[chosen_idx, ...] |
|
rejected_logits = completion_logits[rejected_idx, ...] |
|
|
|
if self.aux_loss_enabled: |
|
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits, outputs.aux_loss) |
|
else: |
|
return (chosen_logps, rejected_logps, chosen_logits, rejected_logits) |
|
|
|
def _get_udm_weight(self, rejected_embeddings: torch.FloatTensor) -> torch.FloatTensor: |
|
prob_desirable = self._get_chosen_prob(rejected_embeddings) |
|
min_ratio = self.args.min_density_ratio |
|
max_ratio = self.args.max_density_ratio |
|
|
|
weight = (prob_desirable / (1 - prob_desirable + 1e-8)).clamp(min=min_ratio, max=max_ratio) |
|
|
|
return weight |
|
|
|
def bco_loss( |
|
self, |
|
policy_chosen_logps: torch.FloatTensor, |
|
policy_rejected_logps: torch.FloatTensor, |
|
reference_chosen_logps: torch.FloatTensor, |
|
reference_rejected_logps: torch.FloatTensor, |
|
chosen_embeddings: Optional[torch.FloatTensor], |
|
rejected_embeddings: Optional[torch.FloatTensor], |
|
do_train: bool = True, |
|
) -> tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]: |
|
"""Compute the BCO loss for a batch of policy and reference model log probabilities. |
|
|
|
Args: |
|
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (num(chosen) in batch_size,) |
|
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (num(rejected) in batch_size,) |
|
reference_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape: (num(chosen) in batch_size,) |
|
reference_rejected_logps: Log probabilities of the reference model for the rejected responses. Shape: (num(rejected) in batch_size,) |
|
chosen_embeddings: embeddings of desirable prompts |
|
rejected_embeddings: embeddings of undesirable prompts |
|
|
|
Returns: |
|
A tuple of four tensors: (losses, chosen_rewards, rejected_rewards, delta). |
|
The losses tensor contains the BCO loss for each example in the batch. |
|
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively. |
|
The delta value contains the moving average of all implicit rewards. |
|
""" |
|
|
|
chosen_logratios = policy_chosen_logps - reference_chosen_logps |
|
chosen_rewards = self.beta * chosen_logratios |
|
|
|
rejected_logratios = policy_rejected_logps - reference_rejected_logps |
|
rejected_rewards = self.beta * rejected_logratios |
|
|
|
if do_train: |
|
self.running.update(torch.cat((chosen_rewards, rejected_rewards), 0).detach()) |
|
delta = torch.as_tensor(self.running.mean, device=chosen_rewards.device) |
|
|
|
chosen_losses = -F.logsigmoid(chosen_rewards - delta) |
|
rejected_losses = -F.logsigmoid(-(rejected_rewards - delta)) |
|
|
|
if self.match_underlying_distribution: |
|
chosen_weight = torch.ones_like(chosen_losses) |
|
rejected_weight = self._get_udm_weight(rejected_embeddings) |
|
|
|
losses = torch.cat((chosen_weight * chosen_losses, rejected_weight * rejected_losses), dim=0) |
|
else: |
|
losses = torch.cat((chosen_losses, rejected_losses), dim=0) |
|
|
|
return losses, chosen_rewards, rejected_rewards, delta |
|
|
|
def get_batch_loss_metrics( |
|
self, |
|
model, |
|
batch: dict[str, Union[list, torch.LongTensor]], |
|
do_train: bool = True, |
|
): |
|
"""Compute the BCO loss and other metrics for the given batch of inputs for train or test.""" |
|
metrics = {} |
|
batch = {k: (v.to(self.accelerator.device) if isinstance(v, torch.Tensor) else v) for k, v in batch.items()} |
|
|
|
forward_output = self.forward(model, batch) |
|
( |
|
policy_chosen_logps, |
|
policy_rejected_logps, |
|
policy_chosen_logits, |
|
policy_rejected_logits, |
|
) = forward_output[:4] |
|
if self.aux_loss_enabled: |
|
aux_loss = forward_output[4] |
|
|
|
|
|
if "reference_logps" in batch: |
|
chosen_idx = [i for i in range(batch["reference_logps"].shape[0]) if batch["label"][i] is True] |
|
rejected_idx = [i for i in range(batch["reference_logps"].shape[0]) if batch["label"][i] is False] |
|
|
|
reference_chosen_logps = batch["reference_logps"][chosen_idx, ...] |
|
reference_rejected_logps = batch["reference_logps"][rejected_idx, ...] |
|
else: |
|
with torch.no_grad(): |
|
if self.ref_model is None: |
|
with self.null_ref_context(): |
|
( |
|
reference_chosen_logps, |
|
reference_rejected_logps, |
|
_, |
|
_, |
|
) = self.forward(self.model, batch)[:4] |
|
else: |
|
( |
|
reference_chosen_logps, |
|
reference_rejected_logps, |
|
_, |
|
_, |
|
) = self.forward(self.ref_model, batch)[:4] |
|
|
|
chosen_embeddings, rejected_embeddings = self._get_prompt_embeddings(batch) |
|
|
|
losses, chosen_rewards, rejected_rewards, delta = self.bco_loss( |
|
policy_chosen_logps, |
|
policy_rejected_logps, |
|
reference_chosen_logps, |
|
reference_rejected_logps, |
|
chosen_embeddings, |
|
rejected_embeddings, |
|
do_train=do_train, |
|
) |
|
metrics["delta"] = self.accelerator.gather_for_metrics(delta).mean().item() |
|
|
|
num_chosen = torch.Tensor([len(chosen_rewards)]).to(self.accelerator.device) |
|
num_rejected = torch.Tensor([len(rejected_rewards)]).to(self.accelerator.device) |
|
|
|
all_num_chosen = self.accelerator.gather_for_metrics(num_chosen).sum().item() |
|
all_num_rejected = self.accelerator.gather_for_metrics(num_rejected).sum().item() |
|
|
|
if all_num_chosen > 0: |
|
metrics["rewards/chosen_sum"] = ( |
|
self.accelerator.gather_for_metrics(chosen_rewards.nansum()).nansum().item() |
|
) |
|
metrics["logps/chosen_sum"] = ( |
|
self.accelerator.gather_for_metrics(policy_chosen_logps.nansum()).nansum().item() |
|
) |
|
metrics["logits/chosen_sum"] = ( |
|
self.accelerator.gather_for_metrics(policy_chosen_logits.nansum()).nansum().item() |
|
) |
|
metrics["count/chosen"] = all_num_chosen |
|
|
|
if all_num_rejected > 0: |
|
metrics["rewards/rejected_sum"] = ( |
|
self.accelerator.gather_for_metrics(rejected_rewards.nansum()).nansum().item() |
|
) |
|
metrics["logps/rejected_sum"] = ( |
|
self.accelerator.gather_for_metrics(policy_rejected_logps.nansum()).nansum().item() |
|
) |
|
metrics["logits/rejected_sum"] = ( |
|
self.accelerator.gather_for_metrics(policy_rejected_logits.nansum()).nansum().item() |
|
) |
|
metrics["count/rejected"] = all_num_rejected |
|
|
|
loss = losses.nanmean() |
|
if self.aux_loss_enabled: |
|
loss += self.aux_loss_coef * aux_loss |
|
|
|
return loss, metrics |
|
|
|
def compute_loss( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module], |
|
inputs: dict[str, Union[torch.Tensor, Any]], |
|
return_outputs=False, |
|
num_items_in_batch=None, |
|
) -> Union[torch.Tensor, tuple[torch.Tensor, dict[str, torch.Tensor]]]: |
|
compute_loss_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext() |
|
|
|
with compute_loss_context_manager: |
|
loss, metrics = self.get_batch_loss_metrics(model, inputs) |
|
|
|
|
|
loss = loss.to(self.args.device) |
|
|
|
if self.accelerator.is_main_process: |
|
self.store_metrics(metrics, train_eval="train") |
|
|
|
if return_outputs: |
|
return (loss, metrics) |
|
return loss |
|
|
|
def store_metrics(self, metrics: dict[str, float], train_eval: Literal["train", "eval"] = "train") -> None: |
|
for key, value in metrics.items(): |
|
self._stored_metrics[train_eval][key].append(value) |
|
|
|
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: |
|
if self.train_dataset is None or not has_length(self.train_dataset): |
|
return None |
|
return SequentialSampler(self.train_dataset) |
|
|
|
def generate_from_model_and_ref(self, model, batch: dict[str, torch.LongTensor]) -> tuple[str, str]: |
|
"""Generate samples from the model and reference model for the given batch of inputs.""" |
|
|
|
|
|
|
|
generate_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext() |
|
with generate_context_manager: |
|
policy_output = model.generate( |
|
input_ids=batch["prompt_input_ids"], |
|
attention_mask=batch["prompt_attention_mask"], |
|
max_length=self.max_length, |
|
do_sample=True, |
|
pad_token_id=self.processing_class.pad_token_id, |
|
) |
|
|
|
|
|
if "reference_output" in batch: |
|
reference_output = batch["reference_output"] |
|
else: |
|
if self.ref_model is None: |
|
with self.null_ref_context(): |
|
reference_output = self.model.generate( |
|
input_ids=batch["prompt_input_ids"], |
|
attention_mask=batch["prompt_attention_mask"], |
|
max_length=self.max_length, |
|
do_sample=True, |
|
pad_token_id=self.processing_class.pad_token_id, |
|
) |
|
else: |
|
reference_output = self.ref_model.generate( |
|
input_ids=batch["prompt_input_ids"], |
|
attention_mask=batch["prompt_attention_mask"], |
|
max_length=self.max_length, |
|
do_sample=True, |
|
pad_token_id=self.processing_class.pad_token_id, |
|
) |
|
|
|
policy_output = pad_to_length(policy_output, self.max_length, self.processing_class.pad_token_id) |
|
policy_output_decoded = self.processing_class.batch_decode(policy_output, skip_special_tokens=True) |
|
|
|
reference_output = pad_to_length(reference_output, self.max_length, self.processing_class.pad_token_id) |
|
reference_output_decoded = self.processing_class.batch_decode(reference_output, skip_special_tokens=True) |
|
|
|
return policy_output_decoded, reference_output_decoded |
|
|
|
def prediction_step( |
|
self, |
|
model: Union[PreTrainedModel, nn.Module], |
|
inputs: dict[str, Union[torch.Tensor, Any]], |
|
prediction_loss_only: bool, |
|
ignore_keys: Optional[list[str]] = None, |
|
): |
|
if ignore_keys is None: |
|
if hasattr(model, "config"): |
|
ignore_keys = getattr(model.config, "keys_to_ignore_at_inference", []) |
|
else: |
|
ignore_keys = [] |
|
|
|
prediction_context_manager = amp.autocast("cuda") if self._peft_has_been_casted_to_bf16 else nullcontext() |
|
with torch.no_grad(), prediction_context_manager: |
|
loss, metrics = self.get_batch_loss_metrics(model, inputs, do_train=False) |
|
|
|
|
|
if self.accelerator.is_main_process: |
|
self.store_metrics(metrics, train_eval="eval") |
|
|
|
if prediction_loss_only: |
|
return (loss.detach(), None, None) |
|
|
|
|
|
logits_dict = {} |
|
if "logits/chosen_sum" in metrics: |
|
logits_dict["eval_logits/chosen"] = metrics["logits/chosen_sum"] |
|
if "logits/rejected_sum" in metrics: |
|
logits_dict["eval_logits/rejected"] = metrics["logits/rejected_sum"] |
|
logits = [v for k, v in logits_dict.items() if k not in ignore_keys] |
|
logits = torch.tensor(logits, device=self.accelerator.device) |
|
labels = torch.zeros(logits.shape[0], device=self.accelerator.device) |
|
|
|
return (loss.detach(), logits, labels) |
|
|
|
def evaluation_loop( |
|
self, |
|
dataloader: DataLoader, |
|
description: str, |
|
prediction_loss_only: Optional[bool] = None, |
|
ignore_keys: Optional[list[str]] = None, |
|
metric_key_prefix: str = "eval", |
|
) -> EvalLoopOutput: |
|
""" |
|
Overriding built-in evaluation loop to store metrics for each batch. |
|
Prediction/evaluation loop, shared by `Trainer.evaluate()` and `Trainer.predict()`. |
|
|
|
Works both with or without labels. |
|
""" |
|
|
|
|
|
if self.generate_during_eval: |
|
|
|
num_samples = len(dataloader.dataset) |
|
random_indices = random.sample(range(num_samples), k=self.args.eval_batch_size) |
|
|
|
|
|
random_batch_dataset = dataloader.dataset.select(random_indices) |
|
random_batch = self.data_collator(random_batch_dataset) |
|
random_batch = self._prepare_inputs(random_batch) |
|
|
|
target_indicies = [i for i in range(len(random_batch["label"])) if random_batch["label"][i] is False] |
|
target_batch = { |
|
"prompt_input_ids": random_batch["prompt_input_ids"][target_indicies], |
|
"prompt_attention_mask": random_batch["prompt_attention_mask"][target_indicies], |
|
"prompt": itemgetter(*target_indicies)(random_batch["prompt"]), |
|
} |
|
policy_output_decoded, ref_output_decoded = self.generate_from_model_and_ref(self.model, target_batch) |
|
|
|
table = pd.DataFrame( |
|
columns=["Prompt", "Policy", "Ref Model"], |
|
data=[ |
|
[prompt, pol[len(prompt) :], ref[len(prompt) :]] |
|
for prompt, pol, ref in zip(target_batch["prompt"], policy_output_decoded, ref_output_decoded) |
|
], |
|
) |
|
if "wandb" in self.args.report_to: |
|
wandb.log({"game_log": wandb.Table(data=table)}) |
|
|
|
if "comet_ml" in self.args.report_to: |
|
log_table_to_comet_experiment( |
|
name="game_log.csv", |
|
table=table, |
|
) |
|
|
|
|
|
initial_output = super().evaluation_loop( |
|
dataloader, description, prediction_loss_only, ignore_keys, metric_key_prefix |
|
) |
|
|
|
return initial_output |
|
|
|
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: |
|
""" |
|
Log `logs` on the various objects watching training, including stored metrics. |
|
|
|
Args: |
|
logs (`dict[str, float]`): |
|
The values to log. |
|
start_time (`float` or `None`, *optional*, defaults to `None`): |
|
Start time of the training. |
|
""" |
|
|
|
train_eval = "train" if "loss" in logs else "eval" |
|
|
|
prefix = "eval_" if train_eval == "eval" else "" |
|
|
|
for split in ["chosen", "rejected"]: |
|
if f"count/{split}" in self._stored_metrics[train_eval]: |
|
count_sum = torch.Tensor(self._stored_metrics[train_eval][f"count/{split}"]).sum().item() |
|
for metric in ["rewards", "logps", "logits"]: |
|
logs[f"{prefix}{metric}/{split}"] = ( |
|
torch.Tensor(self._stored_metrics[train_eval][f"{metric}/{split}_sum"]).sum().item() |
|
/ count_sum |
|
) |
|
|
|
del self._stored_metrics[train_eval][f"{metric}/{split}_sum"] |
|
del self._stored_metrics[train_eval][f"count/{split}"] |
|
|
|
if f"{prefix}rewards/chosen" in logs and f"{prefix}rewards/rejected" in logs: |
|
logs[f"{prefix}rewards/margins"] = logs[f"{prefix}rewards/chosen"] - logs[f"{prefix}rewards/rejected"] |
|
|
|
for key, metrics in self._stored_metrics[train_eval].items(): |
|
logs[f"{prefix}{key}"] = torch.Tensor(metrics).mean().item() |
|
del self._stored_metrics[train_eval] |
|
|
|
if version.parse(transformers.__version__) >= version.parse("4.47.0.dev0"): |
|
return super().log(logs, start_time) |
|
else: |
|
return super().log(logs) |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
tags = tags or [] |
|
if isinstance(tags, str): |
|
tags = [tags] |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.append("unsloth") |
|
|
|
citation = textwrap.dedent("""\ |
|
@article{jung2024binary, |
|
title = {{Binary Classifier Optimization for Large Language Model Alignment}}, |
|
author = {Seungjae Jung and Gunsoo Han and Daniel Wontae Nam and Kyoung{-}Woon On}, |
|
year = 2024, |
|
eprint = {arXiv:2404.04656} |
|
}""") |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=tags, |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
comet_url=get_comet_experiment_url(), |
|
trainer_name="BCO", |
|
trainer_citation=citation, |
|
paper_title="Binary Classifier Optimization for Large Language Model Alignment", |
|
paper_id="2404.04656", |
|
) |
|
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
|