|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass, field |
|
from typing import Any, Optional |
|
|
|
from transformers import TrainingArguments |
|
|
|
|
|
@dataclass |
|
class BCOConfig(TrainingArguments): |
|
r""" |
|
Configuration class for the [`BCOTrainer`]. |
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
command line. |
|
|
|
Parameters: |
|
max_length (`int` or `None`, *optional*, defaults to `1024`): |
|
Maximum length of the sequences (prompt + completion) in the batch. This argument is required if you want |
|
to use the default data collator. |
|
max_prompt_length (`int` or `None`, *optional*, defaults to `512`): |
|
Maximum length of the prompt. This argument is required if you want to use the default data collator. |
|
max_completion_length (`int` or `None`, *optional*, defaults to `None`): |
|
Maximum length of the completion. This argument is required if you want to use the default data collator |
|
and your model is an encoder-decoder. |
|
beta (`float`, *optional*, defaults to `0.1`): |
|
Parameter controlling the deviation from the reference model. Higher Ξ² means less deviation from the |
|
reference model. |
|
label_pad_token_id (`int`, *optional*, defaults to `-100`): |
|
Label pad token id. This argument is required if you want to use the default data collator. |
|
padding_value (`int` or `None`, *optional*, defaults to `None`): |
|
Padding value to use. If `None`, the padding value of the tokenizer is used. |
|
truncation_mode (`str`, *optional*, defaults to `"keep_end"`): |
|
Truncation mode to use when the prompt is too long. Possible values are `"keep_end"` or `"keep_start"`. |
|
This argument is required if you want to use the default data collator. |
|
disable_dropout (`bool`, *optional*, defaults to `True`): |
|
Whether to disable dropout in the model and reference model. |
|
generate_during_eval (`bool`, *optional*, defaults to `False`): |
|
If `True`, generates and logs completions from both the model and the reference model to W&B or Comet during |
|
evaluation. |
|
is_encoder_decoder (`bool` or `None`, *optional*, defaults to `None`): |
|
When using the `model_init` argument (callable) to instantiate the model instead of the `model` argument, |
|
you need to specify if the model returned by the callable is an encoder-decoder model. |
|
precompute_ref_log_probs (`bool`, *optional*, defaults to `False`): |
|
Whether to precompute reference model log probabilities for training and evaluation datasets. This is |
|
useful when training without the reference model to reduce the total GPU memory needed. |
|
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the model from a |
|
string. |
|
ref_model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the reference model |
|
from a string. |
|
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): |
|
Number of processes to use for processing the dataset. |
|
prompt_sample_size (`int`, *optional*, defaults to `1024`): |
|
Number of prompts that are fed to density ratio classifier. |
|
min_density_ratio (`float`, *optional*, defaults to `0.5`): |
|
Minimum value of the density ratio. The estimated density ratio is clamped to this value. |
|
max_density_ratio (`float`, *optional*, defaults to `10.0`): |
|
Maximum value of the density ratio. The estimated density ratio is clamped to this value. |
|
""" |
|
|
|
max_length: Optional[int] = field( |
|
default=1024, |
|
metadata={ |
|
"help": "Maximum length of the sequences (prompt + completion) in the batch. " |
|
"This argument is required if you want to use the default data collator." |
|
}, |
|
) |
|
max_prompt_length: Optional[int] = field( |
|
default=512, |
|
metadata={ |
|
"help": "Maximum length of the prompt. " |
|
"This argument is required if you want to use the default data collator." |
|
}, |
|
) |
|
max_completion_length: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Maximum length of the completion. This argument is required if you want to use the " |
|
"default data collator and your model is an encoder-decoder." |
|
}, |
|
) |
|
beta: float = field( |
|
default=0.1, |
|
metadata={ |
|
"help": "Parameter controlling the deviation from the reference model. " |
|
"Higher Ξ² means less deviation from the reference model." |
|
}, |
|
) |
|
label_pad_token_id: int = field( |
|
default=-100, |
|
metadata={ |
|
"help": "Label pad token id. This argument is required if you want to use the default data collator." |
|
}, |
|
) |
|
padding_value: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "Padding value to use. If `None`, the padding value of the tokenizer is used."}, |
|
) |
|
truncation_mode: str = field( |
|
default="keep_end", |
|
metadata={ |
|
"help": "Truncation mode to use when the prompt is too long. Possible values are " |
|
"`keep_end` or `keep_start`. This argument is required if you want to use the " |
|
"default data collator." |
|
}, |
|
) |
|
disable_dropout: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to disable dropout in the model and reference model."}, |
|
) |
|
generate_during_eval: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "If `True`, generates and logs completions from both the model and the reference model " |
|
"to W&B during evaluation." |
|
}, |
|
) |
|
is_encoder_decoder: Optional[bool] = field( |
|
default=None, |
|
metadata={ |
|
"help": "When using the `model_init` argument (callable) to instantiate the model instead of the " |
|
"`model` argument, you need to specify if the model returned by the callable is an " |
|
"encoder-decoder model." |
|
}, |
|
) |
|
precompute_ref_log_probs: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to precompute reference model log probabilities for training and evaluation datasets. " |
|
"This is useful when training without the reference model to reduce the total GPU memory " |
|
"needed." |
|
}, |
|
) |
|
model_init_kwargs: Optional[dict[str, Any]] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the " |
|
"model from a string." |
|
}, |
|
) |
|
ref_model_init_kwargs: Optional[dict[str, Any]] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Keyword arguments to pass to `AutoModelForCausalLM.from_pretrained` when instantiating the " |
|
"reference model from a string." |
|
}, |
|
) |
|
dataset_num_proc: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "Number of processes to use for processing the dataset."}, |
|
) |
|
prompt_sample_size: int = field( |
|
default=1024, |
|
metadata={"help": "Number of prompts that are fed to density ratio classifier."}, |
|
) |
|
min_density_ratio: float = field( |
|
default=0.5, |
|
metadata={"help": "Minimum value of the density ratio. The estimated density ratio is clamped to this value."}, |
|
) |
|
max_density_ratio: float = field( |
|
default=10.0, |
|
metadata={"help": "Maximum value of the density ratio. The estimated density ratio is clamped to this value."}, |
|
) |
|
|