|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
# Full training |
|
python trl/scripts/sft.py \ |
|
--model_name_or_path Qwen/Qwen2-0.5B \ |
|
--dataset_name trl-lib/Capybara \ |
|
--learning_rate 2.0e-5 \ |
|
--num_train_epochs 1 \ |
|
--packing \ |
|
--per_device_train_batch_size 2 \ |
|
--gradient_accumulation_steps 8 \ |
|
--gradient_checkpointing \ |
|
--eos_token '<|im_end|>' \ |
|
--logging_steps 25 \ |
|
--eval_strategy steps \ |
|
--eval_steps 100 \ |
|
--output_dir Qwen2-0.5B-SFT \ |
|
--push_to_hub |
|
|
|
# LoRA |
|
python trl/scripts/sft.py \ |
|
--model_name_or_path Qwen/Qwen2-0.5B \ |
|
--dataset_name trl-lib/Capybara \ |
|
--learning_rate 2.0e-4 \ |
|
--num_train_epochs 1 \ |
|
--packing \ |
|
--per_device_train_batch_size 2 \ |
|
--gradient_accumulation_steps 8 \ |
|
--gradient_checkpointing \ |
|
--eos_token '<|im_end|>' \ |
|
--logging_steps 25 \ |
|
--eval_strategy steps \ |
|
--eval_steps 100 \ |
|
--use_peft \ |
|
--lora_r 32 \ |
|
--lora_alpha 16 \ |
|
--output_dir Qwen2-0.5B-SFT \ |
|
--push_to_hub |
|
""" |
|
|
|
import argparse |
|
|
|
from datasets import load_dataset |
|
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer |
|
from transformers.models.auto.modeling_auto import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES |
|
|
|
from trl import ( |
|
ModelConfig, |
|
ScriptArguments, |
|
SFTConfig, |
|
SFTTrainer, |
|
TrlParser, |
|
get_kbit_device_map, |
|
get_peft_config, |
|
get_quantization_config, |
|
setup_chat_format, |
|
) |
|
|
|
|
|
def main(script_args, training_args, model_args): |
|
|
|
|
|
|
|
quantization_config = get_quantization_config(model_args) |
|
model_kwargs = dict( |
|
revision=model_args.model_revision, |
|
trust_remote_code=model_args.trust_remote_code, |
|
attn_implementation=model_args.attn_implementation, |
|
torch_dtype=model_args.torch_dtype, |
|
use_cache=False if training_args.gradient_checkpointing else True, |
|
device_map=get_kbit_device_map() if quantization_config is not None else None, |
|
quantization_config=quantization_config, |
|
) |
|
|
|
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path) |
|
valid_image_text_architectures = MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES.values() |
|
|
|
if config.architectures and any(arch in valid_image_text_architectures for arch in config.architectures): |
|
from transformers import AutoModelForImageTextToText |
|
|
|
model_kwargs.pop("use_cache", None) |
|
model = AutoModelForImageTextToText.from_pretrained(model_args.model_name_or_path, **model_kwargs) |
|
else: |
|
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, use_fast=True |
|
) |
|
|
|
|
|
if tokenizer.chat_template is None: |
|
model, tokenizer = setup_chat_format(model, tokenizer, format="chatml") |
|
|
|
|
|
|
|
|
|
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) |
|
|
|
|
|
|
|
|
|
trainer = SFTTrainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset[script_args.dataset_train_split], |
|
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, |
|
processing_class=tokenizer, |
|
peft_config=get_peft_config(model_args), |
|
) |
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model(training_args.output_dir) |
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(dataset_name=script_args.dataset_name) |
|
|
|
|
|
def make_parser(subparsers: argparse._SubParsersAction = None): |
|
dataclass_types = (ScriptArguments, SFTConfig, ModelConfig) |
|
if subparsers is not None: |
|
parser = subparsers.add_parser("sft", help="Run the SFT training script", dataclass_types=dataclass_types) |
|
else: |
|
parser = TrlParser(dataclass_types) |
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = make_parser() |
|
script_args, training_args, model_args = parser.parse_args_and_config() |
|
main(script_args, training_args, model_args) |
|
|