|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Run the KTO training script with the commands below. In general, the optimal configuration for KTO will be similar to that of DPO. |
|
|
|
# Full training: |
|
python trl/scripts/kto.py \ |
|
--dataset_name trl-lib/kto-mix-14k \ |
|
--model_name_or_path=trl-lib/qwen1.5-1.8b-sft \ |
|
--per_device_train_batch_size 16 \ |
|
--num_train_epochs 1 \ |
|
--learning_rate 5e-7 \ |
|
--lr_scheduler_type=cosine \ |
|
--gradient_accumulation_steps 1 \ |
|
--logging_steps 10 \ |
|
--eval_steps 500 \ |
|
--output_dir=kto-aligned-model \ |
|
--warmup_ratio 0.1 \ |
|
--report_to wandb \ |
|
--bf16 \ |
|
--logging_first_step |
|
|
|
# QLoRA: |
|
python trl/scripts/kto.py \ |
|
--dataset_name trl-lib/kto-mix-14k \ |
|
--model_name_or_path=trl-lib/qwen1.5-1.8b-sft \ |
|
--per_device_train_batch_size 8 \ |
|
--num_train_epochs 1 \ |
|
--learning_rate 5e-7 \ |
|
--lr_scheduler_type=cosine \ |
|
--gradient_accumulation_steps 1 \ |
|
--logging_steps 10 \ |
|
--eval_steps 500 \ |
|
--output_dir=kto-aligned-model-lora \ |
|
--warmup_ratio 0.1 \ |
|
--report_to wandb \ |
|
--bf16 \ |
|
--logging_first_step \ |
|
--use_peft \ |
|
--load_in_4bit \ |
|
--lora_target_modules=all-linear \ |
|
--lora_r=16 \ |
|
--lora_alpha=16 |
|
""" |
|
|
|
import argparse |
|
|
|
from datasets import load_dataset |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
from trl import ( |
|
KTOConfig, |
|
KTOTrainer, |
|
ModelConfig, |
|
ScriptArguments, |
|
TrlParser, |
|
get_peft_config, |
|
setup_chat_format, |
|
) |
|
|
|
|
|
def main(script_args, training_args, model_args): |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code |
|
) |
|
ref_model = AutoModelForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code |
|
) |
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
if tokenizer.chat_template is None: |
|
model, tokenizer = setup_chat_format(model, tokenizer) |
|
|
|
|
|
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) |
|
|
|
|
|
trainer = KTOTrainer( |
|
model, |
|
ref_model, |
|
args=training_args, |
|
train_dataset=dataset[script_args.dataset_train_split], |
|
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, |
|
processing_class=tokenizer, |
|
peft_config=get_peft_config(model_args), |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model(training_args.output_dir) |
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(dataset_name=script_args.dataset_name) |
|
|
|
|
|
def make_parser(subparsers: argparse._SubParsersAction = None): |
|
dataclass_types = (ScriptArguments, KTOConfig, ModelConfig) |
|
if subparsers is not None: |
|
parser = subparsers.add_parser("kto", help="Run the KTO training script", dataclass_types=dataclass_types) |
|
else: |
|
parser = TrlParser(dataclass_types) |
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = make_parser() |
|
script_args, training_args, model_args = parser.parse_args_and_config() |
|
main(script_args, training_args, model_args) |
|
|