|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
from datasets import load_dataset |
|
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
from trl import GRPOConfig, GRPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_peft_config |
|
|
|
|
|
@dataclass |
|
class GRPOScriptArguments(ScriptArguments): |
|
""" |
|
Script arguments for the GRPO training script. |
|
|
|
Args: |
|
reward_model_name_or_path (`str` or `None`): |
|
Reward model id of a pretrained model hosted inside a model repo on huggingface.co or local path to a |
|
directory containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`]. |
|
""" |
|
|
|
reward_model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Reward model id of a pretrained model hosted inside a model repo on huggingface.co or " |
|
"local path to a directory containing model weights saved using `PreTrainedModel.save_pretrained`." |
|
}, |
|
) |
|
|
|
|
|
def main(script_args, training_args, model_args): |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code |
|
) |
|
reward_model = AutoModelForSequenceClassification.from_pretrained( |
|
script_args.reward_model_name_or_path, trust_remote_code=model_args.trust_remote_code, num_labels=1 |
|
) |
|
|
|
|
|
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) |
|
|
|
|
|
trainer = GRPOTrainer( |
|
model=model, |
|
reward_funcs=reward_model, |
|
args=training_args, |
|
train_dataset=dataset[script_args.dataset_train_split], |
|
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, |
|
processing_class=tokenizer, |
|
peft_config=get_peft_config(model_args), |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
trainer.save_model(training_args.output_dir) |
|
if training_args.push_to_hub: |
|
trainer.push_to_hub(dataset_name=script_args.dataset_name) |
|
|
|
|
|
def make_parser(subparsers: argparse._SubParsersAction = None): |
|
dataclass_types = (GRPOScriptArguments, GRPOConfig, ModelConfig) |
|
if subparsers is not None: |
|
parser = subparsers.add_parser("grpo", help="Run the GRPO training script", dataclass_types=dataclass_types) |
|
else: |
|
parser = TrlParser(dataclass_types) |
|
return parser |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = make_parser() |
|
script_args, training_args, model_args = parser.parse_args_and_config() |
|
main(script_args, training_args, model_args) |
|
|