|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union |
|
|
|
from packaging import version |
|
|
|
from .base import HfQuantizer |
|
from .quantizers_utils import get_module_from_name |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ..modeling_utils import PreTrainedModel |
|
|
|
from ..utils import ( |
|
is_accelerate_available, |
|
is_optimum_quanto_available, |
|
is_quanto_available, |
|
is_torch_available, |
|
logging, |
|
) |
|
from ..utils.quantization_config import QuantoConfig |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class QuantoHfQuantizer(HfQuantizer): |
|
""" |
|
Quantizer for the quanto library |
|
""" |
|
|
|
required_packages = ["quanto", "accelerate"] |
|
requires_parameters_quantization = True |
|
requires_calibration = False |
|
|
|
def __init__(self, quantization_config: QuantoConfig, **kwargs): |
|
super().__init__(quantization_config, **kwargs) |
|
self.post_init() |
|
|
|
def post_init(self): |
|
r""" |
|
Safety checker |
|
""" |
|
if self.quantization_config.activations is not None and not self.pre_quantized: |
|
raise ValueError( |
|
"We don't support quantizing the activations with transformers library." |
|
"Use quanto library for more complex use cases such as activations quantization, calibration and quantization aware training." |
|
) |
|
|
|
def validate_environment(self, *args, **kwargs): |
|
if not (is_optimum_quanto_available() or is_quanto_available()): |
|
raise ImportError( |
|
"Loading an optimum-quanto quantized model requires optimum-quanto library (`pip install optimum-quanto`)" |
|
) |
|
if not is_accelerate_available(): |
|
raise ImportError( |
|
"Loading an optimum-quanto quantized model requires accelerate library (`pip install accelerate`)" |
|
) |
|
|
|
def update_device_map(self, device_map): |
|
if device_map is None: |
|
device_map = {"": "cpu"} |
|
logger.info( |
|
"The device_map was not initialized. " |
|
"Setting device_map to {'':'cpu'}. " |
|
"If you want to use the model for inference, please set device_map ='auto'" |
|
) |
|
return device_map |
|
|
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": |
|
if torch_dtype is None: |
|
logger.info("You did not specify `torch_dtype` in `from_pretrained`. Setting it to `torch.float32`.") |
|
torch_dtype = torch.float32 |
|
return torch_dtype |
|
|
|
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: |
|
if is_optimum_quanto_available(): |
|
from optimum.quanto import QModuleMixin |
|
elif is_quanto_available(): |
|
logger.warning_once( |
|
"Importing from quanto will be deprecated in v4.47. Please install optimum-quanto instrad `pip install optimum-quanto`" |
|
) |
|
from quanto import QModuleMixin |
|
|
|
not_missing_keys = [] |
|
for name, module in model.named_modules(): |
|
if isinstance(module, QModuleMixin): |
|
for missing in missing_keys: |
|
if ( |
|
(name in missing or name in f"{prefix}.{missing}") |
|
and not missing.endswith(".weight") |
|
and not missing.endswith(".bias") |
|
): |
|
not_missing_keys.append(missing) |
|
return [k for k in missing_keys if k not in not_missing_keys] |
|
|
|
def check_quantized_param( |
|
self, |
|
model: "PreTrainedModel", |
|
param_value: "torch.Tensor", |
|
param_name: str, |
|
state_dict: Dict[str, Any], |
|
**kwargs, |
|
) -> bool: |
|
""" |
|
Check if a parameter needs to be quantized. |
|
""" |
|
if is_optimum_quanto_available(): |
|
from optimum.quanto import QModuleMixin |
|
elif is_quanto_available(): |
|
logger.warning_once( |
|
"Importing from quanto will be deprecated in v4.47. Please install optimum-quanto instrad `pip install optimum-quanto`" |
|
) |
|
from quanto import QModuleMixin |
|
|
|
device_map = kwargs.get("device_map", None) |
|
param_device = kwargs.get("param_device", None) |
|
|
|
if device_map is not None and param_device is not None: |
|
device_map_values = set(device_map.values()) |
|
if param_device == "cpu" and len(device_map_values) > 1: |
|
if not (device_map_values == {"cpu"} or device_map_values == {"cpu", "disk"}): |
|
return False |
|
|
|
module, tensor_name = get_module_from_name(model, param_name) |
|
|
|
if isinstance(module, QModuleMixin) and "weight" in tensor_name: |
|
|
|
return not module.frozen |
|
else: |
|
return False |
|
|
|
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: |
|
max_memory = {key: val * 0.90 for key, val in max_memory.items()} |
|
return max_memory |
|
|
|
def create_quantized_param( |
|
self, |
|
model: "PreTrainedModel", |
|
param_value: "torch.Tensor", |
|
param_name: str, |
|
target_device: "torch.device", |
|
*args, |
|
**kwargs, |
|
): |
|
""" |
|
Create the quantized parameter by calling .freeze() after setting it to the module. |
|
""" |
|
from accelerate.utils import set_module_tensor_to_device |
|
|
|
set_module_tensor_to_device(model, param_name, target_device, param_value) |
|
module, _ = get_module_from_name(model, param_name) |
|
module.freeze() |
|
module.weight.requires_grad = False |
|
|
|
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": |
|
if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.27.0"): |
|
from accelerate.utils import CustomDtype |
|
|
|
mapping = { |
|
"int8": torch.int8, |
|
"float8": CustomDtype.FP8, |
|
"int4": CustomDtype.INT4, |
|
"int2": CustomDtype.INT2, |
|
} |
|
target_dtype = mapping[self.quantization_config.weights] |
|
return target_dtype |
|
else: |
|
raise ValueError( |
|
"You are using `device_map='auto'` on an optimum-quanto quantized model. To automatically compute" |
|
" the appropriate device map, you should upgrade your `accelerate` library," |
|
"`pip install --upgrade accelerate` or install it from source." |
|
) |
|
|
|
def _process_model_before_weight_loading( |
|
self, model: "PreTrainedModel", keep_in_fp32_modules: List[str] = [], **kwargs |
|
): |
|
from ..integrations import get_keys_to_not_convert, replace_with_quanto_layers |
|
|
|
|
|
if self.quantization_config.modules_to_not_convert is None: |
|
self.modules_to_not_convert = get_keys_to_not_convert(model) |
|
else: |
|
self.modules_to_not_convert = self.quantization_config.modules_to_not_convert |
|
|
|
if not isinstance(self.modules_to_not_convert, list): |
|
self.modules_to_not_convert = [self.modules_to_not_convert] |
|
|
|
self.modules_to_not_convert.extend(keep_in_fp32_modules) |
|
|
|
model, _ = replace_with_quanto_layers( |
|
model, modules_to_not_convert=self.modules_to_not_convert, quantization_config=self.quantization_config |
|
) |
|
model.config.quantization_config = self.quantization_config |
|
|
|
def _process_model_after_weight_loading(self, model): |
|
return model |
|
|
|
@property |
|
def is_trainable(self, model: Optional["PreTrainedModel"] = None): |
|
return True |
|
|
|
def is_serializable(self, safe_serialization=None): |
|
return False |
|
|