|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
from typing import TYPE_CHECKING, Optional |
|
|
|
from packaging import version |
|
|
|
from .base import HfQuantizer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ..modeling_utils import PreTrainedModel |
|
|
|
from ..utils import is_auto_gptq_available, is_optimum_available, is_torch_available, logging |
|
from ..utils.quantization_config import GPTQConfig, QuantizationConfigMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class GptqHfQuantizer(HfQuantizer): |
|
""" |
|
Quantizer of the GPTQ method - for GPTQ the quantizer support calibration of the model through |
|
`auto_gptq` package. Quantization is done under the hood for users if they load a non-prequantized model. |
|
""" |
|
|
|
requires_calibration = False |
|
required_packages = ["optimum", "auto_gptq"] |
|
optimum_quantizer = None |
|
|
|
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): |
|
super().__init__(quantization_config, **kwargs) |
|
from optimum.gptq import GPTQQuantizer |
|
|
|
self.optimum_quantizer = GPTQQuantizer.from_dict(self.quantization_config.to_dict_optimum()) |
|
|
|
def validate_environment(self, *args, **kwargs): |
|
gptq_supports_cpu = version.parse(importlib.metadata.version("auto-gptq")) > version.parse("0.4.2") |
|
if not gptq_supports_cpu and not torch.cuda.is_available(): |
|
raise RuntimeError("GPU is required to quantize or run quantize model.") |
|
elif not (is_optimum_available() and is_auto_gptq_available()): |
|
raise ImportError( |
|
"Loading a GPTQ quantized model requires optimum (`pip install optimum`) and auto-gptq library (`pip install auto-gptq`)" |
|
) |
|
elif version.parse(importlib.metadata.version("auto_gptq")) < version.parse("0.4.2"): |
|
raise ImportError( |
|
"You need a version of auto_gptq >= 0.4.2 to use GPTQ: `pip install --upgrade auto-gptq`" |
|
) |
|
|
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": |
|
if torch_dtype is None: |
|
torch_dtype = torch.float16 |
|
elif torch_dtype != torch.float16: |
|
logger.info("We suggest you to set `torch_dtype=torch.float16` for better efficiency with GPTQ.") |
|
return torch_dtype |
|
|
|
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): |
|
if model.__class__.main_input_name != "input_ids": |
|
raise RuntimeError("We can only quantize pure text model.") |
|
|
|
if self.pre_quantized: |
|
model = self.optimum_quantizer.convert_model(model) |
|
|
|
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): |
|
if self.pre_quantized: |
|
model = self.optimum_quantizer.post_init_model(model) |
|
else: |
|
if self.quantization_config.tokenizer is None: |
|
self.quantization_config.tokenizer = model.name_or_path |
|
|
|
self.optimum_quantizer.quantize_model(model, self.quantization_config.tokenizer) |
|
model.config.quantization_config = GPTQConfig.from_dict(self.optimum_quantizer.to_dict()) |
|
|
|
@property |
|
def is_trainable(self, model: Optional["PreTrainedModel"] = None): |
|
return True |
|
|
|
def is_serializable(self, safe_serialization=None): |
|
return True |
|
|