|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import TYPE_CHECKING, Dict, List, Union |
|
|
|
from .base import HfQuantizer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ..modeling_utils import PreTrainedModel |
|
|
|
from ..utils import is_accelerate_available, is_torch_available, logging |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class BitNetHfQuantizer(HfQuantizer): |
|
""" |
|
1.58-bit quantization from BitNet quantization method: |
|
Before loading: it converts the linear layers into BitLinear layers during loading. |
|
|
|
Checkout the paper introducing this method : https://arxiv.org/pdf/2402.17764 |
|
""" |
|
|
|
requires_parameters_quantization = False |
|
requires_calibration = True |
|
|
|
required_packages = ["accelerate"] |
|
|
|
def __init__(self, quantization_config, **kwargs): |
|
super().__init__(quantization_config, **kwargs) |
|
self.quantization_config = quantization_config |
|
|
|
def validate_environment(self, *args, **kwargs): |
|
if not is_accelerate_available(): |
|
raise ImportError("Loading a BitNet quantized model requires accelerate (`pip install accelerate`)") |
|
|
|
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False): |
|
raise ValueError( |
|
"Loading ternary weights from tf/flax is currently not supported, please make" |
|
" sure the weights are in PyTorch format." |
|
) |
|
|
|
if not torch.cuda.is_available(): |
|
logger.warning_once( |
|
"You don't have a GPU available to load the model, the inference will be slow because of weight unpacking" |
|
) |
|
return |
|
|
|
device_map = kwargs.get("device_map", None) |
|
if device_map is None: |
|
logger.warning_once( |
|
"You have loaded a BitNet model on CPU and have a CUDA device available, make sure to set " |
|
"your model on a GPU device in order to run your model." |
|
) |
|
elif device_map is not None: |
|
if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): |
|
raise ValueError( |
|
"You are attempting to load a BitNet model with a device_map that contains a CPU or disk device." |
|
"This is not supported. Please remove the CPU or disk device from the device_map." |
|
) |
|
|
|
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs): |
|
return model |
|
|
|
def _process_model_before_weight_loading( |
|
self, |
|
model: "PreTrainedModel", |
|
device_map, |
|
keep_in_fp32_modules: List[str] = [], |
|
**kwargs, |
|
): |
|
from ..integrations import get_keys_to_not_convert, replace_with_bitnet_linear |
|
|
|
self.modules_to_not_convert = get_keys_to_not_convert(model) |
|
|
|
if self.quantization_config.modules_to_not_convert is not None: |
|
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert) |
|
|
|
model = replace_with_bitnet_linear( |
|
model, |
|
modules_to_not_convert=self.modules_to_not_convert, |
|
quantization_config=self.quantization_config, |
|
pre_quantized=self.pre_quantized, |
|
) |
|
|
|
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: |
|
max_memory = {key: val * 0.90 for key, val in max_memory.items()} |
|
return max_memory |
|
|
|
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype": |
|
target_dtype = torch.int8 |
|
return target_dtype |
|
|
|
def is_serializable(self, safe_serialization=None): |
|
return True |
|
|
|
@property |
|
def is_trainable(self) -> bool: |
|
return False |
|
|