|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib.metadata |
|
from typing import TYPE_CHECKING |
|
|
|
from packaging import version |
|
|
|
from .base import HfQuantizer |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ..modeling_utils import PreTrainedModel |
|
|
|
from ..utils import is_accelerate_available, is_auto_awq_available, is_torch_available, logging |
|
from ..utils.quantization_config import AWQLinearVersion |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class AwqQuantizer(HfQuantizer): |
|
""" |
|
4-bit quantization for Activation-aware Weight Quantization(AWQ) (https://arxiv.org/abs/2306.00978) |
|
""" |
|
|
|
|
|
requires_calibration = True |
|
|
|
required_packages = ["awq", "accelerate"] |
|
|
|
def __init__(self, quantization_config, **kwargs): |
|
super().__init__(quantization_config, **kwargs) |
|
|
|
def validate_environment(self, device_map, **kwargs): |
|
if not is_auto_awq_available(): |
|
raise ImportError("Loading an AWQ quantized model requires auto-awq library (`pip install autoawq`)") |
|
|
|
if not is_accelerate_available(): |
|
raise ImportError("Loading an AWQ quantized model requires accelerate (`pip install accelerate`)") |
|
|
|
if self.quantization_config.version == AWQLinearVersion.IPEX: |
|
if version.parse(importlib.metadata.version("autoawq")) < version.parse("0.2.6"): |
|
raise RuntimeError( |
|
"To use IPEX backend, you need autoawq>0.6.2. Please install the latest version or from source." |
|
) |
|
if ( |
|
device_map is not None |
|
and isinstance(device_map, dict) |
|
and (torch.device("cpu") not in device_map.values() or len(device_map.values()) > 1) |
|
): |
|
raise ValueError( |
|
"You are attempting to load an IPEX version AWQ model with a device_map that contains more than CPU." |
|
" This is not supported. Please make sure only cpu in the device_map." |
|
) |
|
else: |
|
if not torch.cuda.is_available(): |
|
raise RuntimeError( |
|
"GPU is required to run AWQ quantized model. You can use IPEX version AWQ if you have an Intel CPU" |
|
) |
|
|
|
if device_map is None: |
|
logger.warning_once( |
|
"You have loaded an AWQ model on CPU and have a CUDA device available, make sure to set " |
|
"your model on a GPU device in order to run your model." |
|
) |
|
elif device_map is not None: |
|
if isinstance(device_map, dict) and ("cpu" in device_map.values() or "disk" in device_map.values()): |
|
raise ValueError( |
|
"You are attempting to load an AWQ model with a device_map that contains a CPU or disk device." |
|
" This is not supported. Please remove the CPU or disk device from the device_map." |
|
) |
|
|
|
def update_torch_dtype(self, torch_dtype): |
|
if torch_dtype is None: |
|
torch_dtype = torch.float16 |
|
elif torch_dtype != torch.float16: |
|
logger.warning("We suggest you to set `torch_dtype=torch.float16` for better efficiency with AWQ.") |
|
return torch_dtype |
|
|
|
def _process_model_before_weight_loading(self, model: "PreTrainedModel", **kwargs): |
|
from ..integrations import get_keys_to_not_convert, replace_quantization_scales, replace_with_awq_linear |
|
|
|
self.modules_to_not_convert = get_keys_to_not_convert(model) |
|
|
|
if self.quantization_config.modules_to_not_convert is not None: |
|
self.modules_to_not_convert.extend(self.quantization_config.modules_to_not_convert) |
|
|
|
model, has_been_replaced = replace_with_awq_linear( |
|
model, quantization_config=self.quantization_config, modules_to_not_convert=self.modules_to_not_convert |
|
) |
|
|
|
model = replace_quantization_scales(model, model.config.model_type) |
|
|
|
if not has_been_replaced: |
|
logger.warning( |
|
"You are loading an AWQ model but no linear modules were found in your model." |
|
" Please double check your model architecture, or submit an issue on github if you think this is a bug." |
|
) |
|
|
|
def _process_model_after_weight_loading(self, model): |
|
if self.quantization_config.do_fuse: |
|
from ..integrations import fuse_awq_modules |
|
|
|
model = fuse_awq_modules(model, self.quantization_config) |
|
model._awq_is_fused = True |
|
|
|
if self.quantization_config.version == AWQLinearVersion.EXLLAMA: |
|
from ..integrations import post_init_awq_exllama_modules |
|
|
|
model = post_init_awq_exllama_modules(model, self.quantization_config.exllama_config) |
|
|
|
if self.quantization_config.version == AWQLinearVersion.IPEX: |
|
from ..integrations import post_init_awq_ipex_modules |
|
|
|
model = post_init_awq_ipex_modules(model) |
|
|
|
def is_serializable(self, safe_serialization=None): |
|
|
|
if self.quantization_config.do_fuse: |
|
logger.warning("You cannot save an AWQ model that uses fused modules!") |
|
return False |
|
|
|
if self.quantization_config.version == AWQLinearVersion.EXLLAMA: |
|
logger.warning("You cannot save an AWQ model that uses Exllama backend!") |
|
return False |
|
|
|
return True |
|
|
|
@property |
|
def is_trainable(self): |
|
|
|
MIN_AWQ_VERSION_FOR_PEFT = "0.2.0" |
|
return version.parse(importlib.metadata.version("autoawq")) >= version.parse(MIN_AWQ_VERSION_FOR_PEFT) |
|
|