|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
from typing import List, Union |
|
|
|
import numpy as np |
|
|
|
from ..utils import ( |
|
ExplicitEnum, |
|
add_end_docstrings, |
|
is_tf_available, |
|
is_torch_available, |
|
is_vision_available, |
|
logging, |
|
requires_backends, |
|
) |
|
from .base import Pipeline, build_pipeline_init_args |
|
|
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
from ..image_utils import load_image |
|
|
|
if is_tf_available(): |
|
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
def sigmoid(_outputs): |
|
return 1.0 / (1.0 + np.exp(-_outputs)) |
|
|
|
|
|
|
|
def softmax(_outputs): |
|
maxes = np.max(_outputs, axis=-1, keepdims=True) |
|
shifted_exp = np.exp(_outputs - maxes) |
|
return shifted_exp / shifted_exp.sum(axis=-1, keepdims=True) |
|
|
|
|
|
|
|
class ClassificationFunction(ExplicitEnum): |
|
SIGMOID = "sigmoid" |
|
SOFTMAX = "softmax" |
|
NONE = "none" |
|
|
|
|
|
@add_end_docstrings( |
|
build_pipeline_init_args(has_image_processor=True), |
|
r""" |
|
function_to_apply (`str`, *optional*, defaults to `"default"`): |
|
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: |
|
|
|
- `"default"`: if the model has a single label, will apply the sigmoid function on the output. If the model |
|
has several labels, will apply the softmax function on the output. |
|
- `"sigmoid"`: Applies the sigmoid function on the output. |
|
- `"softmax"`: Applies the softmax function on the output. |
|
- `"none"`: Does not apply any function on the output.""", |
|
) |
|
class ImageClassificationPipeline(Pipeline): |
|
""" |
|
Image classification pipeline using any `AutoModelForImageClassification`. This pipeline predicts the class of an |
|
image. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> classifier = pipeline(model="microsoft/beit-base-patch16-224-pt22k-ft22k") |
|
>>> classifier("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") |
|
[{'score': 0.442, 'label': 'macaw'}, {'score': 0.088, 'label': 'popinjay'}, {'score': 0.075, 'label': 'parrot'}, {'score': 0.073, 'label': 'parodist, lampooner'}, {'score': 0.046, 'label': 'poll, poll_parrot'}] |
|
``` |
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) |
|
|
|
This image classification pipeline can currently be loaded from [`pipeline`] using the following task identifier: |
|
`"image-classification"`. |
|
|
|
See the list of available models on |
|
[huggingface.co/models](https://huggingface.co/models?filter=image-classification). |
|
""" |
|
|
|
function_to_apply: ClassificationFunction = ClassificationFunction.NONE |
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
requires_backends(self, "vision") |
|
self.check_model_type( |
|
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES |
|
if self.framework == "tf" |
|
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES |
|
) |
|
|
|
def _sanitize_parameters(self, top_k=None, function_to_apply=None, timeout=None): |
|
preprocess_params = {} |
|
if timeout is not None: |
|
warnings.warn( |
|
"The `timeout` argument is deprecated and will be removed in version 5 of Transformers", FutureWarning |
|
) |
|
preprocess_params["timeout"] = timeout |
|
postprocess_params = {} |
|
if top_k is not None: |
|
postprocess_params["top_k"] = top_k |
|
if isinstance(function_to_apply, str): |
|
function_to_apply = ClassificationFunction(function_to_apply.lower()) |
|
if function_to_apply is not None: |
|
postprocess_params["function_to_apply"] = function_to_apply |
|
return preprocess_params, {}, postprocess_params |
|
|
|
def __call__(self, inputs: Union[str, List[str], "Image.Image", List["Image.Image"]] = None, **kwargs): |
|
""" |
|
Assign labels to the image(s) passed as inputs. |
|
|
|
Args: |
|
inputs (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`): |
|
The pipeline handles three types of images: |
|
|
|
- A string containing a http link pointing to an image |
|
- A string containing a local path to an image |
|
- An image loaded in PIL directly |
|
|
|
The pipeline accepts either a single image or a batch of images, which must then be passed as a string. |
|
Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL |
|
images. |
|
function_to_apply (`str`, *optional*, defaults to `"default"`): |
|
The function to apply to the model outputs in order to retrieve the scores. Accepts four different |
|
values: |
|
|
|
If this argument is not specified, then it will apply the following functions according to the number |
|
of labels: |
|
|
|
- If the model has a single label, will apply the sigmoid function on the output. |
|
- If the model has several labels, will apply the softmax function on the output. |
|
|
|
Possible values are: |
|
|
|
- `"sigmoid"`: Applies the sigmoid function on the output. |
|
- `"softmax"`: Applies the softmax function on the output. |
|
- `"none"`: Does not apply any function on the output. |
|
top_k (`int`, *optional*, defaults to 5): |
|
The number of top labels that will be returned by the pipeline. If the provided number is higher than |
|
the number of labels available in the model configuration, it will default to the number of labels. |
|
|
|
Return: |
|
A dictionary or a list of dictionaries containing result. If the input is a single image, will return a |
|
dictionary, if the input is a list of several images, will return a list of dictionaries corresponding to |
|
the images. |
|
|
|
The dictionaries contain the following keys: |
|
|
|
- **label** (`str`) -- The label identified by the model. |
|
- **score** (`int`) -- The score attributed by the model for that label. |
|
""" |
|
|
|
if "images" in kwargs: |
|
inputs = kwargs.pop("images") |
|
if inputs is None: |
|
raise ValueError("Cannot call the image-classification pipeline without an inputs argument!") |
|
return super().__call__(inputs, **kwargs) |
|
|
|
def preprocess(self, image, timeout=None): |
|
image = load_image(image, timeout=timeout) |
|
model_inputs = self.image_processor(images=image, return_tensors=self.framework) |
|
if self.framework == "pt": |
|
model_inputs = model_inputs.to(self.torch_dtype) |
|
return model_inputs |
|
|
|
def _forward(self, model_inputs): |
|
model_outputs = self.model(**model_inputs) |
|
return model_outputs |
|
|
|
def postprocess(self, model_outputs, function_to_apply=None, top_k=5): |
|
if function_to_apply is None: |
|
if self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels == 1: |
|
function_to_apply = ClassificationFunction.SIGMOID |
|
elif self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels > 1: |
|
function_to_apply = ClassificationFunction.SOFTMAX |
|
elif hasattr(self.model.config, "function_to_apply") and function_to_apply is None: |
|
function_to_apply = self.model.config.function_to_apply |
|
else: |
|
function_to_apply = ClassificationFunction.NONE |
|
|
|
if top_k > self.model.config.num_labels: |
|
top_k = self.model.config.num_labels |
|
|
|
outputs = model_outputs["logits"][0] |
|
if self.framework == "pt" and outputs.dtype in (torch.bfloat16, torch.float16): |
|
outputs = outputs.to(torch.float32).numpy() |
|
else: |
|
outputs = outputs.numpy() |
|
|
|
if function_to_apply == ClassificationFunction.SIGMOID: |
|
scores = sigmoid(outputs) |
|
elif function_to_apply == ClassificationFunction.SOFTMAX: |
|
scores = softmax(outputs) |
|
elif function_to_apply == ClassificationFunction.NONE: |
|
scores = outputs |
|
else: |
|
raise ValueError(f"Unrecognized `function_to_apply` argument: {function_to_apply}") |
|
|
|
dict_scores = [ |
|
{"label": self.model.config.id2label[i], "score": score.item()} for i, score in enumerate(scores) |
|
] |
|
dict_scores.sort(key=lambda x: x["score"], reverse=True) |
|
if top_k is not None: |
|
dict_scores = dict_scores[:top_k] |
|
|
|
return dict_scores |
|
|