|
from typing import Dict |
|
|
|
from ..utils import add_end_docstrings |
|
from .base import GenericTensor, Pipeline, build_pipeline_init_args |
|
|
|
|
|
@add_end_docstrings( |
|
build_pipeline_init_args(has_tokenizer=True, supports_binary_output=False), |
|
r""" |
|
tokenize_kwargs (`dict`, *optional*): |
|
Additional dictionary of keyword arguments passed along to the tokenizer. |
|
return_tensors (`bool`, *optional*): |
|
If `True`, returns a tensor according to the specified framework, otherwise returns a list.""", |
|
) |
|
class FeatureExtractionPipeline(Pipeline): |
|
""" |
|
Feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base |
|
transformer, which can be used as features in downstream tasks. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import pipeline |
|
|
|
>>> extractor = pipeline(model="google-bert/bert-base-uncased", task="feature-extraction") |
|
>>> result = extractor("This is a simple test.", return_tensors=True) |
|
>>> result.shape # This is a tensor of shape [1, sequence_length, hidden_dimension] representing the input string. |
|
torch.Size([1, 8, 768]) |
|
``` |
|
|
|
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial) |
|
|
|
This feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier: |
|
`"feature-extraction"`. |
|
|
|
All models may be used for this pipeline. See a list of all models, including community-contributed models on |
|
[huggingface.co/models](https://huggingface.co/models). |
|
""" |
|
|
|
def _sanitize_parameters(self, truncation=None, tokenize_kwargs=None, return_tensors=None, **kwargs): |
|
if tokenize_kwargs is None: |
|
tokenize_kwargs = {} |
|
|
|
if truncation is not None: |
|
if "truncation" in tokenize_kwargs: |
|
raise ValueError( |
|
"truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" |
|
) |
|
tokenize_kwargs["truncation"] = truncation |
|
|
|
preprocess_params = tokenize_kwargs |
|
|
|
postprocess_params = {} |
|
if return_tensors is not None: |
|
postprocess_params["return_tensors"] = return_tensors |
|
|
|
return preprocess_params, {}, postprocess_params |
|
|
|
def preprocess(self, inputs, **tokenize_kwargs) -> Dict[str, GenericTensor]: |
|
model_inputs = self.tokenizer(inputs, return_tensors=self.framework, **tokenize_kwargs) |
|
return model_inputs |
|
|
|
def _forward(self, model_inputs): |
|
model_outputs = self.model(**model_inputs) |
|
return model_outputs |
|
|
|
def postprocess(self, model_outputs, return_tensors=False): |
|
|
|
if return_tensors: |
|
return model_outputs[0] |
|
if self.framework == "pt": |
|
return model_outputs[0].tolist() |
|
elif self.framework == "tf": |
|
return model_outputs[0].numpy().tolist() |
|
|
|
def __call__(self, *args, **kwargs): |
|
""" |
|
Extract the features of the input(s). |
|
|
|
Args: |
|
args (`str` or `List[str]`): One or several texts (or one list of texts) to get the features of. |
|
|
|
Return: |
|
A nested list of `float`: The features computed by the model. |
|
""" |
|
return super().__call__(*args, **kwargs) |
|
|