|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Integrations with other Python libraries. |
|
""" |
|
|
|
import functools |
|
import importlib.metadata |
|
import importlib.util |
|
import json |
|
import numbers |
|
import os |
|
import pickle |
|
import shutil |
|
import sys |
|
import tempfile |
|
from dataclasses import asdict, fields |
|
from enum import Enum |
|
from pathlib import Path |
|
from typing import TYPE_CHECKING, Any, Dict, Literal, Optional, Union |
|
|
|
import numpy as np |
|
import packaging.version |
|
|
|
from .. import PreTrainedModel, TFPreTrainedModel |
|
from .. import __version__ as version |
|
from ..utils import ( |
|
PushToHubMixin, |
|
flatten_dict, |
|
is_datasets_available, |
|
is_pandas_available, |
|
is_tf_available, |
|
is_torch_available, |
|
logging, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
_MIN_COMET_VERSION = "3.43.2" |
|
try: |
|
_comet_version = importlib.metadata.version("comet_ml") |
|
_is_comet_installed = True |
|
|
|
_is_comet_recent_enough = packaging.version.parse(_comet_version) >= packaging.version.parse(_MIN_COMET_VERSION) |
|
|
|
|
|
import comet_ml |
|
|
|
if comet_ml.config.get_config("comet.api_key") is not None: |
|
_is_comet_configured = True |
|
else: |
|
_is_comet_configured = False |
|
except (importlib.metadata.PackageNotFoundError, ImportError, ValueError, TypeError, AttributeError, KeyError): |
|
_comet_version = None |
|
_is_comet_installed = False |
|
_is_comet_recent_enough = False |
|
_is_comet_configured = False |
|
|
|
_has_neptune = ( |
|
importlib.util.find_spec("neptune") is not None or importlib.util.find_spec("neptune-client") is not None |
|
) |
|
if TYPE_CHECKING and _has_neptune: |
|
try: |
|
_neptune_version = importlib.metadata.version("neptune") |
|
logger.info(f"Neptune version {_neptune_version} available.") |
|
except importlib.metadata.PackageNotFoundError: |
|
try: |
|
_neptune_version = importlib.metadata.version("neptune-client") |
|
logger.info(f"Neptune-client version {_neptune_version} available.") |
|
except importlib.metadata.PackageNotFoundError: |
|
_has_neptune = False |
|
|
|
from .. import modelcard |
|
from ..trainer_callback import ProgressCallback, TrainerCallback |
|
from ..trainer_utils import PREFIX_CHECKPOINT_DIR, BestRun, IntervalStrategy |
|
from ..training_args import ParallelMode |
|
from ..utils import ENV_VARS_TRUE_VALUES, is_torch_xla_available |
|
|
|
|
|
|
|
def is_wandb_available(): |
|
|
|
if os.getenv("WANDB_DISABLED", "").upper() in ENV_VARS_TRUE_VALUES: |
|
logger.warning( |
|
"Using the `WANDB_DISABLED` environment variable is deprecated and will be removed in v5. Use the " |
|
"--report_to flag to control the integrations used for logging result (for instance --report_to none)." |
|
) |
|
return False |
|
return importlib.util.find_spec("wandb") is not None |
|
|
|
|
|
def is_clearml_available(): |
|
return importlib.util.find_spec("clearml") is not None |
|
|
|
|
|
def is_comet_available(): |
|
if os.getenv("COMET_MODE", "").upper() == "DISABLED": |
|
logger.warning( |
|
"Using the `COMET_MODE=DISABLED` environment variable is deprecated and will be removed in v5. Use the " |
|
"--report_to flag to control the integrations used for logging result (for instance --report_to none)." |
|
) |
|
return False |
|
|
|
if _is_comet_installed is False: |
|
return False |
|
|
|
if _is_comet_recent_enough is False: |
|
logger.warning( |
|
"comet_ml version %s is installed, but version %s or higher is required. " |
|
"Please update comet_ml to the latest version to enable Comet logging with pip install 'comet-ml>=%s'.", |
|
_comet_version, |
|
_MIN_COMET_VERSION, |
|
_MIN_COMET_VERSION, |
|
) |
|
return False |
|
|
|
if _is_comet_configured is False: |
|
logger.warning( |
|
"comet_ml is installed but the Comet API Key is not configured. " |
|
"Please set the `COMET_API_KEY` environment variable to enable Comet logging. " |
|
"Check out the documentation for other ways of configuring it: " |
|
"https://www.comet.com/docs/v2/guides/experiment-management/configure-sdk/#set-the-api-key" |
|
) |
|
return False |
|
|
|
return True |
|
|
|
|
|
def is_tensorboard_available(): |
|
return importlib.util.find_spec("tensorboard") is not None or importlib.util.find_spec("tensorboardX") is not None |
|
|
|
|
|
def is_optuna_available(): |
|
return importlib.util.find_spec("optuna") is not None |
|
|
|
|
|
def is_ray_available(): |
|
return importlib.util.find_spec("ray") is not None |
|
|
|
|
|
def is_ray_tune_available(): |
|
if not is_ray_available(): |
|
return False |
|
return importlib.util.find_spec("ray.tune") is not None |
|
|
|
|
|
def is_sigopt_available(): |
|
return importlib.util.find_spec("sigopt") is not None |
|
|
|
|
|
def is_azureml_available(): |
|
if importlib.util.find_spec("azureml") is None: |
|
return False |
|
if importlib.util.find_spec("azureml.core") is None: |
|
return False |
|
return importlib.util.find_spec("azureml.core.run") is not None |
|
|
|
|
|
def is_mlflow_available(): |
|
if os.getenv("DISABLE_MLFLOW_INTEGRATION", "FALSE").upper() == "TRUE": |
|
return False |
|
return importlib.util.find_spec("mlflow") is not None |
|
|
|
|
|
def is_dagshub_available(): |
|
return None not in [importlib.util.find_spec("dagshub"), importlib.util.find_spec("mlflow")] |
|
|
|
|
|
def is_neptune_available(): |
|
return _has_neptune |
|
|
|
|
|
def is_codecarbon_available(): |
|
return importlib.util.find_spec("codecarbon") is not None |
|
|
|
|
|
def is_flytekit_available(): |
|
return importlib.util.find_spec("flytekit") is not None |
|
|
|
|
|
def is_flyte_deck_standard_available(): |
|
if not is_flytekit_available(): |
|
return False |
|
return importlib.util.find_spec("flytekitplugins.deck") is not None |
|
|
|
|
|
def is_dvclive_available(): |
|
return importlib.util.find_spec("dvclive") is not None |
|
|
|
|
|
def hp_params(trial): |
|
if is_optuna_available(): |
|
import optuna |
|
|
|
if isinstance(trial, optuna.Trial): |
|
return trial.params |
|
if is_ray_tune_available(): |
|
if isinstance(trial, dict): |
|
return trial |
|
|
|
if is_sigopt_available(): |
|
if isinstance(trial, dict): |
|
return trial |
|
|
|
if is_wandb_available(): |
|
if isinstance(trial, dict): |
|
return trial |
|
|
|
raise RuntimeError(f"Unknown type for trial {trial.__class__}") |
|
|
|
|
|
def run_hp_search_optuna(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: |
|
import optuna |
|
|
|
if trainer.args.process_index == 0: |
|
|
|
def _objective(trial, checkpoint_dir=None): |
|
checkpoint = None |
|
if checkpoint_dir: |
|
for subdir in os.listdir(checkpoint_dir): |
|
if subdir.startswith(PREFIX_CHECKPOINT_DIR): |
|
checkpoint = os.path.join(checkpoint_dir, subdir) |
|
trainer.objective = None |
|
if trainer.args.world_size > 1: |
|
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: |
|
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.") |
|
trainer._hp_search_setup(trial) |
|
args_main_rank_list = [pickle.dumps(trainer.args)] |
|
torch.distributed.broadcast_object_list(args_main_rank_list, src=0) |
|
trainer.train(resume_from_checkpoint=checkpoint) |
|
else: |
|
trainer.train(resume_from_checkpoint=checkpoint, trial=trial) |
|
|
|
if getattr(trainer, "objective", None) is None: |
|
metrics = trainer.evaluate() |
|
trainer.objective = trainer.compute_objective(metrics) |
|
return trainer.objective |
|
|
|
timeout = kwargs.pop("timeout", None) |
|
n_jobs = kwargs.pop("n_jobs", 1) |
|
gc_after_trial = kwargs.pop("gc_after_trial", False) |
|
directions = direction if isinstance(direction, list) else None |
|
direction = None if directions is not None else direction |
|
study = optuna.create_study(direction=direction, directions=directions, **kwargs) |
|
study.optimize(_objective, n_trials=n_trials, timeout=timeout, n_jobs=n_jobs, gc_after_trial=gc_after_trial) |
|
if not study._is_multi_objective(): |
|
best_trial = study.best_trial |
|
return BestRun(str(best_trial.number), best_trial.value, best_trial.params) |
|
else: |
|
best_trials = study.best_trials |
|
return [BestRun(str(best.number), best.values, best.params) for best in best_trials] |
|
else: |
|
for i in range(n_trials): |
|
trainer.objective = None |
|
args_main_rank_list = [None] |
|
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: |
|
raise RuntimeError("only support DDP optuna HPO for ParallelMode.DISTRIBUTED currently.") |
|
torch.distributed.broadcast_object_list(args_main_rank_list, src=0) |
|
args = pickle.loads(bytes(args_main_rank_list[0])) |
|
for key, value in asdict(args).items(): |
|
if key != "local_rank": |
|
setattr(trainer.args, key, value) |
|
trainer.train(resume_from_checkpoint=None) |
|
|
|
if getattr(trainer, "objective", None) is None: |
|
metrics = trainer.evaluate() |
|
trainer.objective = trainer.compute_objective(metrics) |
|
return None |
|
|
|
|
|
def run_hp_search_ray(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: |
|
import ray |
|
import ray.train |
|
|
|
def _objective(trial: dict, local_trainer): |
|
try: |
|
from transformers.utils.notebook import NotebookProgressCallback |
|
|
|
if local_trainer.pop_callback(NotebookProgressCallback): |
|
local_trainer.add_callback(ProgressCallback) |
|
except ModuleNotFoundError: |
|
pass |
|
|
|
local_trainer.objective = None |
|
|
|
checkpoint = ray.train.get_checkpoint() |
|
if checkpoint: |
|
|
|
|
|
|
|
|
|
|
|
local_trainer.objective = "objective" |
|
|
|
with checkpoint.as_directory() as checkpoint_dir: |
|
checkpoint_path = next(Path(checkpoint_dir).glob(f"{PREFIX_CHECKPOINT_DIR}*")).as_posix() |
|
local_trainer.train(resume_from_checkpoint=checkpoint_path, trial=trial) |
|
else: |
|
local_trainer.train(trial=trial) |
|
|
|
|
|
if getattr(local_trainer, "objective", None) is None: |
|
metrics = local_trainer.evaluate() |
|
local_trainer.objective = local_trainer.compute_objective(metrics) |
|
|
|
metrics.update({"objective": local_trainer.objective, "done": True}) |
|
|
|
with tempfile.TemporaryDirectory() as temp_checkpoint_dir: |
|
local_trainer._tune_save_checkpoint(checkpoint_dir=temp_checkpoint_dir) |
|
checkpoint = ray.train.Checkpoint.from_directory(temp_checkpoint_dir) |
|
ray.train.report(metrics, checkpoint=checkpoint) |
|
|
|
if not trainer._memory_tracker.skip_memory_metrics: |
|
from ..trainer_utils import TrainerMemoryTracker |
|
|
|
logger.warning( |
|
"Memory tracking for your Trainer is currently " |
|
"enabled. Automatically disabling the memory tracker " |
|
"since the memory tracker is not serializable." |
|
) |
|
trainer._memory_tracker = TrainerMemoryTracker(skip_memory_metrics=True) |
|
|
|
|
|
|
|
_tb_writer = trainer.pop_callback(TensorBoardCallback) |
|
trainer.model = None |
|
|
|
|
|
if "resources_per_trial" not in kwargs: |
|
|
|
kwargs["resources_per_trial"] = {"cpu": 1} |
|
if trainer.args.n_gpu > 0: |
|
kwargs["resources_per_trial"]["gpu"] = 1 |
|
resource_msg = "1 CPU" + (" and 1 GPU" if trainer.args.n_gpu > 0 else "") |
|
logger.info( |
|
"No `resources_per_trial` arg was passed into " |
|
"`hyperparameter_search`. Setting it to a default value " |
|
f"of {resource_msg} for each trial." |
|
) |
|
|
|
gpus_per_trial = kwargs["resources_per_trial"].get("gpu", 0) |
|
trainer.args._n_gpu = gpus_per_trial |
|
|
|
|
|
if "progress_reporter" not in kwargs: |
|
from ray.tune import CLIReporter |
|
|
|
kwargs["progress_reporter"] = CLIReporter(metric_columns=["objective"]) |
|
|
|
if "scheduler" in kwargs: |
|
from ray.tune.schedulers import ASHAScheduler, HyperBandForBOHB, MedianStoppingRule, PopulationBasedTraining |
|
|
|
|
|
if isinstance( |
|
kwargs["scheduler"], (ASHAScheduler, MedianStoppingRule, HyperBandForBOHB, PopulationBasedTraining) |
|
) and (not trainer.args.do_eval or trainer.args.eval_strategy == IntervalStrategy.NO): |
|
raise RuntimeError( |
|
"You are using {cls} as a scheduler but you haven't enabled evaluation during training. " |
|
"This means your trials will not report intermediate results to Ray Tune, and " |
|
"can thus not be stopped early or used to exploit other trials parameters. " |
|
"If this is what you want, do not use {cls}. If you would like to use {cls}, " |
|
"make sure you pass `do_eval=True` and `eval_strategy='steps'` in the " |
|
"Trainer `args`.".format(cls=type(kwargs["scheduler"]).__name__) |
|
) |
|
|
|
trainable = ray.tune.with_parameters(_objective, local_trainer=trainer) |
|
|
|
@functools.wraps(trainable) |
|
def dynamic_modules_import_trainable(*args, **kwargs): |
|
""" |
|
Wrapper around `tune.with_parameters` to ensure datasets_modules are loaded on each Actor. |
|
|
|
Without this, an ImportError will be thrown. See https://github.com/huggingface/transformers/issues/11565. |
|
|
|
Assumes that `_objective`, defined above, is a function. |
|
""" |
|
if is_datasets_available(): |
|
import datasets.load |
|
|
|
dynamic_modules_path = os.path.join(datasets.load.init_dynamic_modules(), "__init__.py") |
|
|
|
spec = importlib.util.spec_from_file_location("datasets_modules", dynamic_modules_path) |
|
datasets_modules = importlib.util.module_from_spec(spec) |
|
sys.modules[spec.name] = datasets_modules |
|
spec.loader.exec_module(datasets_modules) |
|
return trainable(*args, **kwargs) |
|
|
|
|
|
if hasattr(trainable, "__mixins__"): |
|
dynamic_modules_import_trainable.__mixins__ = trainable.__mixins__ |
|
|
|
analysis = ray.tune.run( |
|
dynamic_modules_import_trainable, |
|
config=trainer.hp_space(None), |
|
num_samples=n_trials, |
|
**kwargs, |
|
) |
|
best_trial = analysis.get_best_trial(metric="objective", mode=direction[:3], scope=trainer.args.ray_scope) |
|
best_run = BestRun(best_trial.trial_id, best_trial.last_result["objective"], best_trial.config, analysis) |
|
if _tb_writer is not None: |
|
trainer.add_callback(_tb_writer) |
|
return best_run |
|
|
|
|
|
def run_hp_search_sigopt(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: |
|
import sigopt |
|
|
|
if trainer.args.process_index == 0: |
|
if importlib.metadata.version("sigopt") >= "8.0.0": |
|
sigopt.set_project("huggingface") |
|
|
|
experiment = sigopt.create_experiment( |
|
name="huggingface-tune", |
|
type="offline", |
|
parameters=trainer.hp_space(None), |
|
metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}], |
|
parallel_bandwidth=1, |
|
budget=n_trials, |
|
) |
|
|
|
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}") |
|
|
|
for run in experiment.loop(): |
|
with run: |
|
trainer.objective = None |
|
if trainer.args.world_size > 1: |
|
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: |
|
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") |
|
trainer._hp_search_setup(run.run) |
|
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0) |
|
trainer.train(resume_from_checkpoint=None) |
|
else: |
|
trainer.train(resume_from_checkpoint=None, trial=run.run) |
|
|
|
if getattr(trainer, "objective", None) is None: |
|
metrics = trainer.evaluate() |
|
trainer.objective = trainer.compute_objective(metrics) |
|
run.log_metric("objective", trainer.objective) |
|
|
|
best = list(experiment.get_best_runs())[0] |
|
best_run = BestRun(best.id, best.values["objective"].value, best.assignments) |
|
else: |
|
from sigopt import Connection |
|
|
|
conn = Connection() |
|
proxies = kwargs.pop("proxies", None) |
|
if proxies is not None: |
|
conn.set_proxies(proxies) |
|
|
|
experiment = conn.experiments().create( |
|
name="huggingface-tune", |
|
parameters=trainer.hp_space(None), |
|
metrics=[{"name": "objective", "objective": direction, "strategy": "optimize"}], |
|
parallel_bandwidth=1, |
|
observation_budget=n_trials, |
|
project="huggingface", |
|
) |
|
logger.info(f"created experiment: https://app.sigopt.com/experiment/{experiment.id}") |
|
|
|
while experiment.progress.observation_count < experiment.observation_budget: |
|
suggestion = conn.experiments(experiment.id).suggestions().create() |
|
trainer.objective = None |
|
if trainer.args.world_size > 1: |
|
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: |
|
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") |
|
trainer._hp_search_setup(suggestion) |
|
torch.distributed.broadcast_object_list(pickle.dumps(trainer.args), src=0) |
|
trainer.train(resume_from_checkpoint=None) |
|
else: |
|
trainer.train(resume_from_checkpoint=None, trial=suggestion) |
|
|
|
if getattr(trainer, "objective", None) is None: |
|
metrics = trainer.evaluate() |
|
trainer.objective = trainer.compute_objective(metrics) |
|
|
|
values = [{"name": "objective", "value": trainer.objective}] |
|
obs = conn.experiments(experiment.id).observations().create(suggestion=suggestion.id, values=values) |
|
logger.info(f"[suggestion_id, observation_id]: [{suggestion.id}, {obs.id}]") |
|
experiment = conn.experiments(experiment.id).fetch() |
|
|
|
best = list(conn.experiments(experiment.id).best_assignments().fetch().iterate_pages())[0] |
|
best_run = BestRun(best.id, best.value, best.assignments) |
|
return best_run |
|
else: |
|
for i in range(n_trials): |
|
trainer.objective = None |
|
args_main_rank = list(pickle.dumps(trainer.args)) |
|
if trainer.args.parallel_mode != ParallelMode.DISTRIBUTED: |
|
raise RuntimeError("only support DDP Sigopt HPO for ParallelMode.DISTRIBUTED currently.") |
|
torch.distributed.broadcast_object_list(args_main_rank, src=0) |
|
args = pickle.loads(bytes(args_main_rank)) |
|
for key, value in asdict(args).items(): |
|
if key != "local_rank": |
|
setattr(trainer.args, key, value) |
|
trainer.train(resume_from_checkpoint=None) |
|
|
|
if getattr(trainer, "objective", None) is None: |
|
metrics = trainer.evaluate() |
|
trainer.objective = trainer.compute_objective(metrics) |
|
return None |
|
|
|
|
|
def run_hp_search_wandb(trainer, n_trials: int, direction: str, **kwargs) -> BestRun: |
|
from ..integrations import is_wandb_available |
|
|
|
if not is_wandb_available(): |
|
raise ImportError("This function needs wandb installed: `pip install wandb`") |
|
import wandb |
|
|
|
|
|
reporting_to_wandb = False |
|
for callback in trainer.callback_handler.callbacks: |
|
if isinstance(callback, WandbCallback): |
|
reporting_to_wandb = True |
|
break |
|
if not reporting_to_wandb: |
|
trainer.add_callback(WandbCallback()) |
|
trainer.args.report_to = ["wandb"] |
|
best_trial = {"run_id": None, "objective": None, "hyperparameters": None} |
|
sweep_id = kwargs.pop("sweep_id", None) |
|
project = kwargs.pop("project", None) |
|
name = kwargs.pop("name", None) |
|
entity = kwargs.pop("entity", None) |
|
metric = kwargs.pop("metric", "eval/loss") |
|
|
|
sweep_config = trainer.hp_space(None) |
|
sweep_config["metric"]["goal"] = direction |
|
sweep_config["metric"]["name"] = metric |
|
if name: |
|
sweep_config["name"] = name |
|
|
|
def _objective(): |
|
run = wandb.run if wandb.run else wandb.init() |
|
trainer.state.trial_name = run.name |
|
run.config.update({"assignments": {}, "metric": metric}) |
|
config = wandb.config |
|
|
|
trainer.objective = None |
|
|
|
trainer.train(resume_from_checkpoint=None, trial=vars(config)["_items"]) |
|
|
|
if getattr(trainer, "objective", None) is None: |
|
metrics = trainer.evaluate() |
|
trainer.objective = trainer.compute_objective(metrics) |
|
format_metrics = rewrite_logs(metrics) |
|
if metric not in format_metrics: |
|
logger.warning( |
|
f"Provided metric {metric} not found. This might result in unexpected sweeps charts. The available" |
|
f" metrics are {format_metrics.keys()}" |
|
) |
|
best_score = False |
|
if best_trial["run_id"] is not None: |
|
if direction == "minimize": |
|
best_score = trainer.objective < best_trial["objective"] |
|
elif direction == "maximize": |
|
best_score = trainer.objective > best_trial["objective"] |
|
|
|
if best_score or best_trial["run_id"] is None: |
|
best_trial["run_id"] = run.id |
|
best_trial["objective"] = trainer.objective |
|
best_trial["hyperparameters"] = dict(config) |
|
|
|
return trainer.objective |
|
|
|
sweep_id = wandb.sweep(sweep_config, project=project, entity=entity) if not sweep_id else sweep_id |
|
logger.info(f"wandb sweep id - {sweep_id}") |
|
wandb.agent(sweep_id, function=_objective, count=n_trials) |
|
|
|
return BestRun(best_trial["run_id"], best_trial["objective"], best_trial["hyperparameters"]) |
|
|
|
|
|
def get_available_reporting_integrations(): |
|
integrations = [] |
|
if is_azureml_available() and not is_mlflow_available(): |
|
integrations.append("azure_ml") |
|
if is_comet_available(): |
|
integrations.append("comet_ml") |
|
if is_dagshub_available(): |
|
integrations.append("dagshub") |
|
if is_dvclive_available(): |
|
integrations.append("dvclive") |
|
if is_mlflow_available(): |
|
integrations.append("mlflow") |
|
if is_neptune_available(): |
|
integrations.append("neptune") |
|
if is_tensorboard_available(): |
|
integrations.append("tensorboard") |
|
if is_wandb_available(): |
|
integrations.append("wandb") |
|
if is_codecarbon_available(): |
|
integrations.append("codecarbon") |
|
if is_clearml_available(): |
|
integrations.append("clearml") |
|
return integrations |
|
|
|
|
|
def rewrite_logs(d): |
|
new_d = {} |
|
eval_prefix = "eval_" |
|
eval_prefix_len = len(eval_prefix) |
|
test_prefix = "test_" |
|
test_prefix_len = len(test_prefix) |
|
for k, v in d.items(): |
|
if k.startswith(eval_prefix): |
|
new_d["eval/" + k[eval_prefix_len:]] = v |
|
elif k.startswith(test_prefix): |
|
new_d["test/" + k[test_prefix_len:]] = v |
|
else: |
|
new_d["train/" + k] = v |
|
return new_d |
|
|
|
|
|
class TensorBoardCallback(TrainerCallback): |
|
""" |
|
A [`TrainerCallback`] that sends the logs to [TensorBoard](https://www.tensorflow.org/tensorboard). |
|
|
|
Args: |
|
tb_writer (`SummaryWriter`, *optional*): |
|
The writer to use. Will instantiate one if not set. |
|
""" |
|
|
|
def __init__(self, tb_writer=None): |
|
has_tensorboard = is_tensorboard_available() |
|
if not has_tensorboard: |
|
raise RuntimeError( |
|
"TensorBoardCallback requires tensorboard to be installed. Either update your PyTorch version or" |
|
" install tensorboardX." |
|
) |
|
if has_tensorboard: |
|
try: |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
self._SummaryWriter = SummaryWriter |
|
except ImportError: |
|
try: |
|
from tensorboardX import SummaryWriter |
|
|
|
self._SummaryWriter = SummaryWriter |
|
except ImportError: |
|
self._SummaryWriter = None |
|
else: |
|
self._SummaryWriter = None |
|
self.tb_writer = tb_writer |
|
|
|
def _init_summary_writer(self, args, log_dir=None): |
|
log_dir = log_dir or args.logging_dir |
|
if self._SummaryWriter is not None: |
|
self.tb_writer = self._SummaryWriter(log_dir=log_dir) |
|
|
|
def on_train_begin(self, args, state, control, **kwargs): |
|
if not state.is_world_process_zero: |
|
return |
|
|
|
log_dir = None |
|
|
|
if state.is_hyper_param_search: |
|
trial_name = state.trial_name |
|
if trial_name is not None: |
|
log_dir = os.path.join(args.logging_dir, trial_name) |
|
|
|
if self.tb_writer is None: |
|
self._init_summary_writer(args, log_dir) |
|
|
|
if self.tb_writer is not None: |
|
self.tb_writer.add_text("args", args.to_json_string()) |
|
if "model" in kwargs: |
|
model = kwargs["model"] |
|
if hasattr(model, "config") and model.config is not None: |
|
model_config_json = model.config.to_json_string() |
|
self.tb_writer.add_text("model_config", model_config_json) |
|
|
|
def on_log(self, args, state, control, logs=None, **kwargs): |
|
if not state.is_world_process_zero: |
|
return |
|
|
|
if self.tb_writer is None: |
|
self._init_summary_writer(args) |
|
|
|
if self.tb_writer is not None: |
|
logs = rewrite_logs(logs) |
|
for k, v in logs.items(): |
|
if isinstance(v, (int, float)): |
|
self.tb_writer.add_scalar(k, v, state.global_step) |
|
else: |
|
logger.warning( |
|
"Trainer is attempting to log a value of " |
|
f'"{v}" of type {type(v)} for key "{k}" as a scalar. ' |
|
"This invocation of Tensorboard's writer.add_scalar() " |
|
"is incorrect so we dropped this attribute." |
|
) |
|
self.tb_writer.flush() |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
if self.tb_writer: |
|
self.tb_writer.close() |
|
self.tb_writer = None |
|
|
|
|
|
def save_model_architecture_to_file(model: Any, output_dir: str): |
|
with open(f"{output_dir}/model_architecture.txt", "w+") as f: |
|
if isinstance(model, PreTrainedModel): |
|
print(model, file=f) |
|
elif is_tf_available() and isinstance(model, TFPreTrainedModel): |
|
|
|
def print_to_file(s): |
|
print(s, file=f) |
|
|
|
model.summary(print_fn=print_to_file) |
|
elif is_torch_available() and ( |
|
isinstance(model, (torch.nn.Module, PushToHubMixin)) and hasattr(model, "base_model") |
|
): |
|
print(model, file=f) |
|
|
|
|
|
class WandbLogModel(str, Enum): |
|
"""Enum of possible log model values in W&B.""" |
|
|
|
CHECKPOINT = "checkpoint" |
|
END = "end" |
|
FALSE = "false" |
|
|
|
@property |
|
def is_enabled(self) -> bool: |
|
"""Check if the value corresponds to a state where the `WANDB_LOG_MODEL` setting is enabled.""" |
|
return self in (WandbLogModel.CHECKPOINT, WandbLogModel.END) |
|
|
|
@classmethod |
|
def _missing_(cls, value: Any) -> "WandbLogModel": |
|
if not isinstance(value, str): |
|
raise ValueError(f"Expecting to have a string `WANDB_LOG_MODEL` setting, but got {type(value)}") |
|
if value.upper() in ENV_VARS_TRUE_VALUES: |
|
raise DeprecationWarning( |
|
f"Setting `WANDB_LOG_MODEL` as {os.getenv('WANDB_LOG_MODEL')} is deprecated and will be removed in " |
|
"version 5 of transformers. Use one of `'end'` or `'checkpoint'` instead." |
|
) |
|
logger.info(f"Setting `WANDB_LOG_MODEL` from {os.getenv('WANDB_LOG_MODEL')} to `end` instead") |
|
return WandbLogModel.END |
|
logger.warning( |
|
f"Received unrecognized `WANDB_LOG_MODEL` setting value={value}; so disabling `WANDB_LOG_MODEL`" |
|
) |
|
return WandbLogModel.FALSE |
|
|
|
|
|
class WandbCallback(TrainerCallback): |
|
""" |
|
A [`TrainerCallback`] that logs metrics, media, model checkpoints to [Weight and Biases](https://www.wandb.com/). |
|
""" |
|
|
|
def __init__(self): |
|
has_wandb = is_wandb_available() |
|
if not has_wandb: |
|
raise RuntimeError("WandbCallback requires wandb to be installed. Run `pip install wandb`.") |
|
if has_wandb: |
|
import wandb |
|
|
|
self._wandb = wandb |
|
self._initialized = False |
|
self._log_model = WandbLogModel(os.getenv("WANDB_LOG_MODEL", "false")) |
|
|
|
def setup(self, args, state, model, **kwargs): |
|
""" |
|
Setup the optional Weights & Biases (*wandb*) integration. |
|
|
|
One can subclass and override this method to customize the setup if needed. Find more information |
|
[here](https://docs.wandb.ai/guides/integrations/huggingface). You can also override the following environment |
|
variables: |
|
|
|
Environment: |
|
- **WANDB_LOG_MODEL** (`str`, *optional*, defaults to `"false"`): |
|
Whether to log model and checkpoints during training. Can be `"end"`, `"checkpoint"` or `"false"`. If set |
|
to `"end"`, the model will be uploaded at the end of training. If set to `"checkpoint"`, the checkpoint |
|
will be uploaded every `args.save_steps` . If set to `"false"`, the model will not be uploaded. Use along |
|
with [`~transformers.TrainingArguments.load_best_model_at_end`] to upload best model. |
|
|
|
<Deprecated version="5.0"> |
|
|
|
Setting `WANDB_LOG_MODEL` as `bool` will be deprecated in version 5 of π€ Transformers. |
|
|
|
</Deprecated> |
|
- **WANDB_WATCH** (`str`, *optional* defaults to `"false"`): |
|
Can be `"gradients"`, `"all"`, `"parameters"`, or `"false"`. Set to `"all"` to log gradients and |
|
parameters. |
|
- **WANDB_PROJECT** (`str`, *optional*, defaults to `"huggingface"`): |
|
Set this to a custom string to store results in a different project. |
|
- **WANDB_DISABLED** (`bool`, *optional*, defaults to `False`): |
|
Whether to disable wandb entirely. Set `WANDB_DISABLED=true` to disable. |
|
""" |
|
if self._wandb is None: |
|
return |
|
self._initialized = True |
|
|
|
|
|
from wandb.sdk.lib.config_util import ConfigError as WandbConfigError |
|
|
|
if state.is_world_process_zero: |
|
logger.info( |
|
'Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"' |
|
) |
|
combined_dict = {**args.to_dict()} |
|
|
|
if hasattr(model, "config") and model.config is not None: |
|
model_config = model.config if isinstance(model.config, dict) else model.config.to_dict() |
|
combined_dict = {**model_config, **combined_dict} |
|
if hasattr(model, "peft_config") and model.peft_config is not None: |
|
peft_config = model.peft_config |
|
combined_dict = {**{"peft_config": peft_config}, **combined_dict} |
|
trial_name = state.trial_name |
|
init_args = {} |
|
if trial_name is not None: |
|
init_args["name"] = trial_name |
|
init_args["group"] = args.run_name |
|
elif args.run_name is not None: |
|
init_args["name"] = args.run_name |
|
if args.run_name == args.output_dir: |
|
self._wandb.termwarn( |
|
"The `run_name` is currently set to the same value as `TrainingArguments.output_dir`. If this was " |
|
"not intended, please specify a different run name by setting the `TrainingArguments.run_name` parameter.", |
|
repeat=False, |
|
) |
|
|
|
if self._wandb.run is None: |
|
self._wandb.init( |
|
project=os.getenv("WANDB_PROJECT", "huggingface"), |
|
**init_args, |
|
) |
|
|
|
self._wandb.config.update(combined_dict, allow_val_change=True) |
|
|
|
|
|
if getattr(self._wandb, "define_metric", None): |
|
self._wandb.define_metric("train/global_step") |
|
self._wandb.define_metric("*", step_metric="train/global_step", step_sync=True) |
|
|
|
|
|
_watch_model = os.getenv("WANDB_WATCH", "false") |
|
if not is_torch_xla_available() and _watch_model in ("all", "parameters", "gradients"): |
|
self._wandb.watch(model, log=_watch_model, log_freq=max(100, state.logging_steps)) |
|
self._wandb.run._label(code="transformers_trainer") |
|
|
|
|
|
try: |
|
self._wandb.config["model/num_parameters"] = model.num_parameters() |
|
except AttributeError: |
|
logger.info( |
|
"Could not log the number of model parameters in Weights & Biases due to an AttributeError." |
|
) |
|
except WandbConfigError: |
|
logger.warning( |
|
"A ConfigError was raised whilst setting the number of model parameters in Weights & Biases config." |
|
) |
|
|
|
|
|
if self._log_model.is_enabled: |
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
model_name = ( |
|
f"model-{self._wandb.run.id}" |
|
if (args.run_name is None or args.run_name == args.output_dir) |
|
else f"model-{self._wandb.run.name}" |
|
) |
|
model_artifact = self._wandb.Artifact( |
|
name=model_name, |
|
type="model", |
|
metadata={ |
|
"model_config": model.config.to_dict() if hasattr(model, "config") else None, |
|
"num_parameters": self._wandb.config.get("model/num_parameters"), |
|
"initial_model": True, |
|
}, |
|
) |
|
|
|
save_model_architecture_to_file(model, temp_dir) |
|
|
|
for f in Path(temp_dir).glob("*"): |
|
if f.is_file(): |
|
with model_artifact.new_file(f.name, mode="wb") as fa: |
|
fa.write(f.read_bytes()) |
|
self._wandb.run.log_artifact(model_artifact, aliases=["base_model"]) |
|
|
|
badge_markdown = ( |
|
f'[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge' |
|
f'-28.svg" alt="Visualize in Weights & Biases" width="20' |
|
f'0" height="32"/>]({self._wandb.run.get_url()})' |
|
) |
|
|
|
modelcard.AUTOGENERATED_TRAINER_COMMENT += f"\n{badge_markdown}" |
|
|
|
def on_train_begin(self, args, state, control, model=None, **kwargs): |
|
if self._wandb is None: |
|
return |
|
hp_search = state.is_hyper_param_search |
|
if hp_search: |
|
self._wandb.finish() |
|
self._initialized = False |
|
args.run_name = None |
|
if not self._initialized: |
|
self.setup(args, state, model, **kwargs) |
|
|
|
def on_train_end(self, args, state, control, model=None, tokenizer=None, **kwargs): |
|
if self._wandb is None: |
|
return |
|
if self._log_model.is_enabled and self._initialized and state.is_world_process_zero: |
|
from ..trainer import Trainer |
|
|
|
fake_trainer = Trainer(args=args, model=model, processing_class=tokenizer) |
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
fake_trainer.save_model(temp_dir) |
|
metadata = ( |
|
{ |
|
k: v |
|
for k, v in dict(self._wandb.summary).items() |
|
if isinstance(v, numbers.Number) and not k.startswith("_") |
|
} |
|
if not args.load_best_model_at_end |
|
else { |
|
f"eval/{args.metric_for_best_model}": state.best_metric, |
|
"train/total_floss": state.total_flos, |
|
"model/num_parameters": self._wandb.config.get("model/num_parameters"), |
|
} |
|
) |
|
metadata["final_model"] = True |
|
logger.info("Logging model artifacts. ...") |
|
model_name = ( |
|
f"model-{self._wandb.run.id}" |
|
if (args.run_name is None or args.run_name == args.output_dir) |
|
else f"model-{self._wandb.run.name}" |
|
) |
|
|
|
save_model_architecture_to_file(model, temp_dir) |
|
|
|
artifact = self._wandb.Artifact(name=model_name, type="model", metadata=metadata) |
|
for f in Path(temp_dir).glob("*"): |
|
if f.is_file(): |
|
with artifact.new_file(f.name, mode="wb") as fa: |
|
fa.write(f.read_bytes()) |
|
self._wandb.run.log_artifact(artifact, aliases=["final_model"]) |
|
|
|
def on_log(self, args, state, control, model=None, logs=None, **kwargs): |
|
single_value_scalars = [ |
|
"train_runtime", |
|
"train_samples_per_second", |
|
"train_steps_per_second", |
|
"train_loss", |
|
"total_flos", |
|
] |
|
|
|
if self._wandb is None: |
|
return |
|
if not self._initialized: |
|
self.setup(args, state, model) |
|
if state.is_world_process_zero: |
|
for k, v in logs.items(): |
|
if k in single_value_scalars: |
|
self._wandb.run.summary[k] = v |
|
non_scalar_logs = {k: v for k, v in logs.items() if k not in single_value_scalars} |
|
non_scalar_logs = rewrite_logs(non_scalar_logs) |
|
self._wandb.log({**non_scalar_logs, "train/global_step": state.global_step}) |
|
|
|
def on_save(self, args, state, control, **kwargs): |
|
if self._log_model == WandbLogModel.CHECKPOINT and self._initialized and state.is_world_process_zero: |
|
checkpoint_metadata = { |
|
k: v |
|
for k, v in dict(self._wandb.summary).items() |
|
if isinstance(v, numbers.Number) and not k.startswith("_") |
|
} |
|
checkpoint_metadata["model/num_parameters"] = self._wandb.config.get("model/num_parameters") |
|
|
|
ckpt_dir = f"checkpoint-{state.global_step}" |
|
artifact_path = os.path.join(args.output_dir, ckpt_dir) |
|
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. ...") |
|
checkpoint_name = ( |
|
f"model-{self._wandb.run.id}" |
|
if (args.run_name is None or args.run_name == args.output_dir) |
|
else f"model-{self._wandb.run.name}" |
|
) |
|
artifact = self._wandb.Artifact(name=checkpoint_name, type="model", metadata=checkpoint_metadata) |
|
artifact.add_dir(artifact_path) |
|
self._wandb.log_artifact( |
|
artifact, aliases=[f"epoch_{round(state.epoch, 2)}", f"checkpoint_global_step_{state.global_step}"] |
|
) |
|
|
|
def on_predict(self, args, state, control, metrics, **kwargs): |
|
if self._wandb is None: |
|
return |
|
if not self._initialized: |
|
self.setup(args, state, **kwargs) |
|
if state.is_world_process_zero: |
|
metrics = rewrite_logs(metrics) |
|
self._wandb.log(metrics) |
|
|
|
|
|
class CometCallback(TrainerCallback): |
|
""" |
|
A [`TrainerCallback`] that sends the logs to [Comet ML](https://www.comet.com/site/). |
|
""" |
|
|
|
def __init__(self): |
|
if _is_comet_installed is False or _is_comet_recent_enough is False: |
|
raise RuntimeError( |
|
f"CometCallback requires comet-ml>={_MIN_COMET_VERSION} to be installed. Run `pip install comet-ml>={_MIN_COMET_VERSION}`." |
|
) |
|
self._initialized = False |
|
self._log_assets = False |
|
self._experiment = None |
|
|
|
def setup(self, args, state, model): |
|
""" |
|
Setup the optional Comet integration. |
|
|
|
Environment: |
|
- **COMET_MODE** (`str`, *optional*, default to `get_or_create`): |
|
Control whether to create and log to a new Comet experiment or append to an existing experiment. |
|
It accepts the following values: |
|
* `get_or_create`: Decides automatically depending if |
|
`COMET_EXPERIMENT_KEY` is set and whether an Experiment |
|
with that key already exists or not. |
|
* `create`: Always create a new Comet Experiment. |
|
* `get`: Always try to append to an Existing Comet Experiment. |
|
Requires `COMET_EXPERIMENT_KEY` to be set. |
|
* `ONLINE`: **deprecated**, used to create an online |
|
Experiment. Use `COMET_START_ONLINE=1` instead. |
|
* `OFFLINE`: **deprecated**, used to created an offline |
|
Experiment. Use `COMET_START_ONLINE=0` instead. |
|
* `DISABLED`: **deprecated**, used to disable Comet logging. |
|
Use the `--report_to` flag to control the integrations used |
|
for logging result instead. |
|
- **COMET_PROJECT_NAME** (`str`, *optional*): |
|
Comet project name for experiments. |
|
- **COMET_LOG_ASSETS** (`str`, *optional*, defaults to `TRUE`): |
|
Whether or not to log training assets (tf event logs, checkpoints, etc), to Comet. Can be `TRUE`, or |
|
`FALSE`. |
|
|
|
For a number of configurable items in the environment, see |
|
[here](https://www.comet.com/docs/v2/guides/experiment-management/configure-sdk/#explore-comet-configuration-options). |
|
""" |
|
self._initialized = True |
|
log_assets = os.getenv("COMET_LOG_ASSETS", "FALSE").upper() |
|
if log_assets in {"TRUE", "1"}: |
|
self._log_assets = True |
|
if state.is_world_process_zero: |
|
comet_old_mode = os.getenv("COMET_MODE") |
|
|
|
mode = None |
|
online = None |
|
|
|
if comet_old_mode is not None: |
|
comet_old_mode = comet_old_mode.lower() |
|
|
|
if comet_old_mode == "online": |
|
online = True |
|
elif comet_old_mode == "offline": |
|
online = False |
|
elif comet_old_mode in ("get", "get_or_create", "create"): |
|
mode = comet_old_mode |
|
elif comet_old_mode: |
|
logger.warning("Invalid COMET_MODE env value %r, Comet logging is disabled", comet_old_mode) |
|
return |
|
|
|
|
|
if state.is_hyper_param_search: |
|
if mode is not None: |
|
logger.warning( |
|
"Hyperparameter Search is enabled, forcing the creation of new experimetns, COMET_MODE value %r is ignored", |
|
comet_old_mode, |
|
) |
|
mode = "create" |
|
|
|
import comet_ml |
|
|
|
|
|
if args.run_name is not None and args.run_name != args.output_dir: |
|
experiment_config = comet_ml.ExperimentConfig(name=args.run_name) |
|
else: |
|
experiment_config = comet_ml.ExperimentConfig() |
|
|
|
self._experiment = comet_ml.start(online=online, mode=mode, experiment_config=experiment_config) |
|
self._experiment.__internal_api__set_model_graph__(model, framework="transformers") |
|
|
|
params = {"args": args.to_dict()} |
|
|
|
if hasattr(model, "config") and model.config is not None: |
|
model_config = model.config.to_dict() |
|
params["config"] = model_config |
|
if hasattr(model, "peft_config") and model.peft_config is not None: |
|
peft_config = model.peft_config |
|
params["peft_config"] = peft_config |
|
|
|
self._experiment.__internal_api__log_parameters__( |
|
params, framework="transformers", source="manual", flatten_nested=True |
|
) |
|
|
|
if state.is_hyper_param_search: |
|
optimization_id = getattr(state, "trial_name", None) |
|
optimization_params = getattr(state, "trial_params", None) |
|
|
|
self._experiment.log_optimization(optimization_id=optimization_id, parameters=optimization_params) |
|
|
|
def on_train_begin(self, args, state, control, model=None, **kwargs): |
|
if not self._initialized: |
|
self.setup(args, state, model) |
|
|
|
def on_log(self, args, state, control, model=None, logs=None, **kwargs): |
|
if not self._initialized: |
|
self.setup(args, state, model) |
|
if state.is_world_process_zero: |
|
if self._experiment is not None: |
|
rewritten_logs = rewrite_logs(logs) |
|
self._experiment.__internal_api__log_metrics__( |
|
rewritten_logs, step=state.global_step, epoch=state.epoch, framework="transformers" |
|
) |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
if self._initialized and state.is_world_process_zero: |
|
if self._experiment is not None: |
|
if self._log_assets is True: |
|
logger.info("Logging checkpoints. This may take time.") |
|
self._experiment.log_asset_folder( |
|
args.output_dir, recursive=True, log_file_name=True, step=state.global_step |
|
) |
|
|
|
|
|
if state.is_hyper_param_search: |
|
self._experiment.clean() |
|
self._initialized = False |
|
|
|
def on_predict(self, args, state, control, metrics, **kwargs): |
|
if not self._initialized: |
|
self.setup(args, state, model=None) |
|
if state.is_world_process_zero and self._experiment is not None: |
|
rewritten_metrics = rewrite_logs(metrics) |
|
self._experiment.__internal_api__log_metrics__( |
|
rewritten_metrics, step=state.global_step, epoch=state.epoch, framework="transformers" |
|
) |
|
|
|
|
|
class AzureMLCallback(TrainerCallback): |
|
""" |
|
A [`TrainerCallback`] that sends the logs to [AzureML](https://pypi.org/project/azureml-sdk/). |
|
""" |
|
|
|
def __init__(self, azureml_run=None): |
|
if not is_azureml_available(): |
|
raise RuntimeError("AzureMLCallback requires azureml to be installed. Run `pip install azureml-sdk`.") |
|
self.azureml_run = azureml_run |
|
|
|
def on_init_end(self, args, state, control, **kwargs): |
|
from azureml.core.run import Run |
|
|
|
if self.azureml_run is None and state.is_world_process_zero: |
|
self.azureml_run = Run.get_context() |
|
|
|
def on_log(self, args, state, control, logs=None, **kwargs): |
|
if self.azureml_run and state.is_world_process_zero: |
|
for k, v in logs.items(): |
|
if isinstance(v, (int, float)): |
|
self.azureml_run.log(k, v, description=k) |
|
|
|
|
|
class MLflowCallback(TrainerCallback): |
|
""" |
|
A [`TrainerCallback`] that sends the logs to [MLflow](https://www.mlflow.org/). Can be disabled by setting |
|
environment variable `DISABLE_MLFLOW_INTEGRATION = TRUE`. |
|
""" |
|
|
|
def __init__(self): |
|
if not is_mlflow_available(): |
|
raise RuntimeError("MLflowCallback requires mlflow to be installed. Run `pip install mlflow`.") |
|
import mlflow |
|
|
|
self._MAX_PARAM_VAL_LENGTH = mlflow.utils.validation.MAX_PARAM_VAL_LENGTH |
|
self._MAX_PARAMS_TAGS_PER_BATCH = mlflow.utils.validation.MAX_PARAMS_TAGS_PER_BATCH |
|
|
|
self._initialized = False |
|
self._auto_end_run = False |
|
self._log_artifacts = False |
|
self._ml_flow = mlflow |
|
|
|
def setup(self, args, state, model): |
|
""" |
|
Setup the optional MLflow integration. |
|
|
|
Environment: |
|
- **HF_MLFLOW_LOG_ARTIFACTS** (`str`, *optional*): |
|
Whether to use MLflow `.log_artifact()` facility to log artifacts. This only makes sense if logging to a |
|
remote server, e.g. s3 or GCS. If set to `True` or *1*, will copy each saved checkpoint on each save in |
|
[`TrainingArguments`]'s `output_dir` to the local or remote artifact storage. Using it without a remote |
|
storage will just copy the files to your artifact location. |
|
- **MLFLOW_TRACKING_URI** (`str`, *optional*): |
|
Whether to store runs at a specific path or remote server. Unset by default, which skips setting the |
|
tracking URI entirely. |
|
- **MLFLOW_EXPERIMENT_NAME** (`str`, *optional*, defaults to `None`): |
|
Whether to use an MLflow experiment_name under which to launch the run. Default to `None` which will point |
|
to the `Default` experiment in MLflow. Otherwise, it is a case sensitive name of the experiment to be |
|
activated. If an experiment with this name does not exist, a new experiment with this name is created. |
|
- **MLFLOW_TAGS** (`str`, *optional*): |
|
A string dump of a dictionary of key/value pair to be added to the MLflow run as tags. Example: |
|
`os.environ['MLFLOW_TAGS']='{"release.candidate": "RC1", "release.version": "2.2.0"}'`. |
|
- **MLFLOW_NESTED_RUN** (`str`, *optional*): |
|
Whether to use MLflow nested runs. If set to `True` or *1*, will create a nested run inside the current |
|
run. |
|
- **MLFLOW_RUN_ID** (`str`, *optional*): |
|
Allow to reattach to an existing run which can be usefull when resuming training from a checkpoint. When |
|
`MLFLOW_RUN_ID` environment variable is set, `start_run` attempts to resume a run with the specified run ID |
|
and other parameters are ignored. |
|
- **MLFLOW_FLATTEN_PARAMS** (`str`, *optional*, defaults to `False`): |
|
Whether to flatten the parameters dictionary before logging. |
|
- **MLFLOW_MAX_LOG_PARAMS** (`int`, *optional*): |
|
Set the maximum number of parameters to log in the run. |
|
""" |
|
self._log_artifacts = os.getenv("HF_MLFLOW_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES |
|
self._nested_run = os.getenv("MLFLOW_NESTED_RUN", "FALSE").upper() in ENV_VARS_TRUE_VALUES |
|
self._tracking_uri = os.getenv("MLFLOW_TRACKING_URI", None) |
|
self._experiment_name = os.getenv("MLFLOW_EXPERIMENT_NAME", None) |
|
self._flatten_params = os.getenv("MLFLOW_FLATTEN_PARAMS", "FALSE").upper() in ENV_VARS_TRUE_VALUES |
|
self._run_id = os.getenv("MLFLOW_RUN_ID", None) |
|
self._max_log_params = os.getenv("MLFLOW_MAX_LOG_PARAMS", None) |
|
|
|
|
|
|
|
|
|
self._async_log = packaging.version.parse(self._ml_flow.__version__) >= packaging.version.parse("2.8.0") |
|
|
|
logger.debug( |
|
f"MLflow experiment_name={self._experiment_name}, run_name={args.run_name}, nested={self._nested_run}," |
|
f" tags={self._nested_run}, tracking_uri={self._tracking_uri}" |
|
) |
|
if state.is_world_process_zero: |
|
if not self._ml_flow.is_tracking_uri_set(): |
|
if self._tracking_uri: |
|
self._ml_flow.set_tracking_uri(self._tracking_uri) |
|
logger.debug(f"MLflow tracking URI is set to {self._tracking_uri}") |
|
else: |
|
logger.debug( |
|
"Environment variable `MLFLOW_TRACKING_URI` is not provided and therefore will not be" |
|
" explicitly set." |
|
) |
|
else: |
|
logger.debug(f"MLflow tracking URI is set to {self._ml_flow.get_tracking_uri()}") |
|
|
|
if self._ml_flow.active_run() is None or self._nested_run or self._run_id: |
|
if self._experiment_name: |
|
|
|
self._ml_flow.set_experiment(self._experiment_name) |
|
self._ml_flow.start_run(run_name=args.run_name, nested=self._nested_run) |
|
logger.debug(f"MLflow run started with run_id={self._ml_flow.active_run().info.run_id}") |
|
self._auto_end_run = True |
|
combined_dict = args.to_dict() |
|
if hasattr(model, "config") and model.config is not None: |
|
model_config = model.config.to_dict() |
|
combined_dict = {**model_config, **combined_dict} |
|
combined_dict = flatten_dict(combined_dict) if self._flatten_params else combined_dict |
|
|
|
for name, value in list(combined_dict.items()): |
|
|
|
if len(str(value)) > self._MAX_PARAM_VAL_LENGTH: |
|
logger.warning( |
|
f'Trainer is attempting to log a value of "{value}" for key "{name}" as a parameter. MLflow\'s' |
|
" log_param() only accepts values no longer than 250 characters so we dropped this attribute." |
|
" You can use `MLFLOW_FLATTEN_PARAMS` environment variable to flatten the parameters and" |
|
" avoid this message." |
|
) |
|
del combined_dict[name] |
|
|
|
combined_dict_items = list(combined_dict.items()) |
|
if self._max_log_params and self._max_log_params.isdigit(): |
|
max_log_params = int(self._max_log_params) |
|
if max_log_params < len(combined_dict_items): |
|
logger.debug( |
|
f"Reducing the number of parameters to log from {len(combined_dict_items)} to {max_log_params}." |
|
) |
|
combined_dict_items = combined_dict_items[:max_log_params] |
|
for i in range(0, len(combined_dict_items), self._MAX_PARAMS_TAGS_PER_BATCH): |
|
if self._async_log: |
|
self._ml_flow.log_params( |
|
dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH]), synchronous=False |
|
) |
|
else: |
|
self._ml_flow.log_params(dict(combined_dict_items[i : i + self._MAX_PARAMS_TAGS_PER_BATCH])) |
|
mlflow_tags = os.getenv("MLFLOW_TAGS", None) |
|
if mlflow_tags: |
|
mlflow_tags = json.loads(mlflow_tags) |
|
self._ml_flow.set_tags(mlflow_tags) |
|
self._initialized = True |
|
|
|
def on_train_begin(self, args, state, control, model=None, **kwargs): |
|
if not self._initialized: |
|
self.setup(args, state, model) |
|
|
|
def on_log(self, args, state, control, logs, model=None, **kwargs): |
|
if not self._initialized: |
|
self.setup(args, state, model) |
|
if state.is_world_process_zero: |
|
metrics = {} |
|
for k, v in logs.items(): |
|
if isinstance(v, (int, float)): |
|
metrics[k] = v |
|
elif isinstance(v, torch.Tensor) and v.numel() == 1: |
|
metrics[k] = v.item() |
|
else: |
|
logger.warning( |
|
f'Trainer is attempting to log a value of "{v}" of type {type(v)} for key "{k}" as a metric. ' |
|
"MLflow's log_metric() only accepts float and int types so we dropped this attribute." |
|
) |
|
|
|
if self._async_log: |
|
self._ml_flow.log_metrics(metrics=metrics, step=state.global_step, synchronous=False) |
|
else: |
|
self._ml_flow.log_metrics(metrics=metrics, step=state.global_step) |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
if self._initialized and state.is_world_process_zero: |
|
if self._auto_end_run and self._ml_flow.active_run(): |
|
self._ml_flow.end_run() |
|
|
|
def on_save(self, args, state, control, **kwargs): |
|
if self._initialized and state.is_world_process_zero and self._log_artifacts: |
|
ckpt_dir = f"checkpoint-{state.global_step}" |
|
artifact_path = os.path.join(args.output_dir, ckpt_dir) |
|
logger.info(f"Logging checkpoint artifacts in {ckpt_dir}. This may take time.") |
|
self._ml_flow.pyfunc.log_model( |
|
ckpt_dir, |
|
artifacts={"model_path": artifact_path}, |
|
python_model=self._ml_flow.pyfunc.PythonModel(), |
|
) |
|
|
|
def __del__(self): |
|
|
|
|
|
if ( |
|
self._auto_end_run |
|
and callable(getattr(self._ml_flow, "active_run", None)) |
|
and self._ml_flow.active_run() is not None |
|
): |
|
self._ml_flow.end_run() |
|
|
|
|
|
class DagsHubCallback(MLflowCallback): |
|
""" |
|
A [`TrainerCallback`] that logs to [DagsHub](https://dagshub.com/). Extends [`MLflowCallback`] |
|
""" |
|
|
|
def __init__(self): |
|
super().__init__() |
|
if not is_dagshub_available(): |
|
raise ImportError("DagsHubCallback requires dagshub to be installed. Run `pip install dagshub`.") |
|
|
|
from dagshub.upload import Repo |
|
|
|
self.Repo = Repo |
|
|
|
def setup(self, *args, **kwargs): |
|
""" |
|
Setup the DagsHub's Logging integration. |
|
|
|
Environment: |
|
- **HF_DAGSHUB_LOG_ARTIFACTS** (`str`, *optional*): |
|
Whether to save the data and model artifacts for the experiment. Default to `False`. |
|
""" |
|
|
|
self.log_artifacts = os.getenv("HF_DAGSHUB_LOG_ARTIFACTS", "FALSE").upper() in ENV_VARS_TRUE_VALUES |
|
self.name = os.getenv("HF_DAGSHUB_MODEL_NAME") or "main" |
|
self.remote = os.getenv("MLFLOW_TRACKING_URI") |
|
self.repo = self.Repo( |
|
owner=self.remote.split(os.sep)[-2], |
|
name=self.remote.split(os.sep)[-1].split(".")[0], |
|
branch=os.getenv("BRANCH") or "main", |
|
) |
|
self.path = Path("artifacts") |
|
|
|
if self.remote is None: |
|
raise RuntimeError( |
|
"DagsHubCallback requires the `MLFLOW_TRACKING_URI` environment variable to be set. Did you run" |
|
" `dagshub.init()`?" |
|
) |
|
|
|
super().setup(*args, **kwargs) |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
if self.log_artifacts: |
|
if getattr(self, "train_dataloader", None): |
|
torch.save(self.train_dataloader.dataset, os.path.join(args.output_dir, "dataset.pt")) |
|
|
|
self.repo.directory(str(self.path)).add_dir(args.output_dir) |
|
|
|
|
|
class NeptuneMissingConfiguration(Exception): |
|
def __init__(self): |
|
super().__init__( |
|
""" |
|
------ Unsupported ---- We were not able to create new runs. You provided a custom Neptune run to |
|
`NeptuneCallback` with the `run` argument. For the integration to work fully, provide your `api_token` and |
|
`project` by saving them as environment variables or passing them to the callback. |
|
""" |
|
) |
|
|
|
|
|
class NeptuneCallback(TrainerCallback): |
|
"""TrainerCallback that sends the logs to [Neptune](https://app.neptune.ai). |
|
|
|
Args: |
|
api_token (`str`, *optional*): Neptune API token obtained upon registration. |
|
You can leave this argument out if you have saved your token to the `NEPTUNE_API_TOKEN` environment |
|
variable (strongly recommended). See full setup instructions in the |
|
[docs](https://docs.neptune.ai/setup/installation). |
|
project (`str`, *optional*): Name of an existing Neptune project, in the form "workspace-name/project-name". |
|
You can find and copy the name in Neptune from the project settings -> Properties. If None (default), the |
|
value of the `NEPTUNE_PROJECT` environment variable is used. |
|
name (`str`, *optional*): Custom name for the run. |
|
base_namespace (`str`, *optional*, defaults to "finetuning"): In the Neptune run, the root namespace |
|
that will contain all of the metadata logged by the callback. |
|
log_parameters (`bool`, *optional*, defaults to `True`): |
|
If True, logs all Trainer arguments and model parameters provided by the Trainer. |
|
log_checkpoints (`str`, *optional*): If "same", uploads checkpoints whenever they are saved by the Trainer. |
|
If "last", uploads only the most recently saved checkpoint. If "best", uploads the best checkpoint (among |
|
the ones saved by the Trainer). If `None`, does not upload checkpoints. |
|
run (`Run`, *optional*): Pass a Neptune run object if you want to continue logging to an existing run. |
|
Read more about resuming runs in the [docs](https://docs.neptune.ai/logging/to_existing_object). |
|
**neptune_run_kwargs (*optional*): |
|
Additional keyword arguments to be passed directly to the |
|
[`neptune.init_run()`](https://docs.neptune.ai/api/neptune#init_run) function when a new run is created. |
|
|
|
For instructions and examples, see the [Transformers integration |
|
guide](https://docs.neptune.ai/integrations/transformers) in the Neptune documentation. |
|
""" |
|
|
|
integration_version_key = "source_code/integrations/transformers" |
|
model_parameters_key = "model_parameters" |
|
trial_name_key = "trial" |
|
trial_params_key = "trial_params" |
|
trainer_parameters_key = "trainer_parameters" |
|
flat_metrics = {"train/epoch"} |
|
|
|
def __init__( |
|
self, |
|
*, |
|
api_token: Optional[str] = None, |
|
project: Optional[str] = None, |
|
name: Optional[str] = None, |
|
base_namespace: str = "finetuning", |
|
run=None, |
|
log_parameters: bool = True, |
|
log_checkpoints: Optional[str] = None, |
|
**neptune_run_kwargs, |
|
): |
|
if not is_neptune_available(): |
|
raise ValueError( |
|
"NeptuneCallback requires the Neptune client library to be installed. " |
|
"To install the library, run `pip install neptune`." |
|
) |
|
|
|
try: |
|
from neptune import Run |
|
from neptune.internal.utils import verify_type |
|
except ImportError: |
|
from neptune.new.internal.utils import verify_type |
|
from neptune.new.metadata_containers.run import Run |
|
|
|
verify_type("api_token", api_token, (str, type(None))) |
|
verify_type("project", project, (str, type(None))) |
|
verify_type("name", name, (str, type(None))) |
|
verify_type("base_namespace", base_namespace, str) |
|
verify_type("run", run, (Run, type(None))) |
|
verify_type("log_parameters", log_parameters, bool) |
|
verify_type("log_checkpoints", log_checkpoints, (str, type(None))) |
|
|
|
self._base_namespace_path = base_namespace |
|
self._log_parameters = log_parameters |
|
self._log_checkpoints = log_checkpoints |
|
self._initial_run: Optional[Run] = run |
|
|
|
self._run = None |
|
self._is_monitoring_run = False |
|
self._run_id = None |
|
self._force_reset_monitoring_run = False |
|
self._init_run_kwargs = {"api_token": api_token, "project": project, "name": name, **neptune_run_kwargs} |
|
|
|
self._volatile_checkpoints_dir = None |
|
self._should_upload_checkpoint = self._log_checkpoints is not None |
|
self._recent_checkpoint_path = None |
|
|
|
if self._log_checkpoints in {"last", "best"}: |
|
self._target_checkpoints_namespace = f"checkpoints/{self._log_checkpoints}" |
|
self._should_clean_recently_uploaded_checkpoint = True |
|
else: |
|
self._target_checkpoints_namespace = "checkpoints" |
|
self._should_clean_recently_uploaded_checkpoint = False |
|
|
|
def _stop_run_if_exists(self): |
|
if self._run: |
|
self._run.stop() |
|
del self._run |
|
self._run = None |
|
|
|
def _initialize_run(self, **additional_neptune_kwargs): |
|
try: |
|
from neptune import init_run |
|
from neptune.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException |
|
except ImportError: |
|
from neptune.new import init_run |
|
from neptune.new.exceptions import NeptuneMissingApiTokenException, NeptuneMissingProjectNameException |
|
|
|
self._stop_run_if_exists() |
|
|
|
try: |
|
run_params = additional_neptune_kwargs.copy() |
|
run_params.update(self._init_run_kwargs) |
|
self._run = init_run(**run_params) |
|
self._run_id = self._run["sys/id"].fetch() |
|
except (NeptuneMissingProjectNameException, NeptuneMissingApiTokenException) as e: |
|
raise NeptuneMissingConfiguration() from e |
|
|
|
def _use_initial_run(self): |
|
self._run = self._initial_run |
|
self._is_monitoring_run = True |
|
self._run_id = self._run["sys/id"].fetch() |
|
self._initial_run = None |
|
|
|
def _ensure_run_with_monitoring(self): |
|
if self._initial_run is not None: |
|
self._use_initial_run() |
|
else: |
|
if not self._force_reset_monitoring_run and self._is_monitoring_run: |
|
return |
|
|
|
if self._run and not self._is_monitoring_run and not self._force_reset_monitoring_run: |
|
self._initialize_run(with_id=self._run_id) |
|
self._is_monitoring_run = True |
|
else: |
|
self._initialize_run() |
|
self._force_reset_monitoring_run = False |
|
|
|
def _ensure_at_least_run_without_monitoring(self): |
|
if self._initial_run is not None: |
|
self._use_initial_run() |
|
else: |
|
if not self._run: |
|
self._initialize_run( |
|
with_id=self._run_id, |
|
capture_stdout=False, |
|
capture_stderr=False, |
|
capture_hardware_metrics=False, |
|
capture_traceback=False, |
|
) |
|
self._is_monitoring_run = False |
|
|
|
@property |
|
def run(self): |
|
if self._run is None: |
|
self._ensure_at_least_run_without_monitoring() |
|
return self._run |
|
|
|
@property |
|
def _metadata_namespace(self): |
|
return self.run[self._base_namespace_path] |
|
|
|
def _log_integration_version(self): |
|
self.run[NeptuneCallback.integration_version_key] = version |
|
|
|
def _log_trainer_parameters(self, args): |
|
self._metadata_namespace[NeptuneCallback.trainer_parameters_key] = args.to_sanitized_dict() |
|
|
|
def _log_model_parameters(self, model): |
|
from neptune.utils import stringify_unsupported |
|
|
|
if model and hasattr(model, "config") and model.config is not None: |
|
self._metadata_namespace[NeptuneCallback.model_parameters_key] = stringify_unsupported( |
|
model.config.to_dict() |
|
) |
|
|
|
def _log_hyper_param_search_parameters(self, state): |
|
if state and hasattr(state, "trial_name"): |
|
self._metadata_namespace[NeptuneCallback.trial_name_key] = state.trial_name |
|
|
|
if state and hasattr(state, "trial_params") and state.trial_params is not None: |
|
self._metadata_namespace[NeptuneCallback.trial_params_key] = state.trial_params |
|
|
|
def _log_model_checkpoint(self, source_directory: str, checkpoint: str): |
|
target_path = relative_path = os.path.join(source_directory, checkpoint) |
|
|
|
if self._volatile_checkpoints_dir is not None: |
|
consistent_checkpoint_path = os.path.join(self._volatile_checkpoints_dir, checkpoint) |
|
try: |
|
|
|
cpkt_path = relative_path.replace("..", "").lstrip(os.path.sep) |
|
copy_path = os.path.join(consistent_checkpoint_path, cpkt_path) |
|
shutil.copytree(relative_path, copy_path) |
|
target_path = consistent_checkpoint_path |
|
except IOError as e: |
|
logger.warning( |
|
"NeptuneCallback was unable to made a copy of checkpoint due to I/O exception: '{}'. " |
|
"Could fail trying to upload.".format(e) |
|
) |
|
|
|
self._metadata_namespace[self._target_checkpoints_namespace].upload_files(target_path) |
|
|
|
if self._should_clean_recently_uploaded_checkpoint and self._recent_checkpoint_path is not None: |
|
self._metadata_namespace[self._target_checkpoints_namespace].delete_files(self._recent_checkpoint_path) |
|
|
|
self._recent_checkpoint_path = relative_path |
|
|
|
def on_init_end(self, args, state, control, **kwargs): |
|
self._volatile_checkpoints_dir = None |
|
if self._log_checkpoints and (args.overwrite_output_dir or args.save_total_limit is not None): |
|
self._volatile_checkpoints_dir = tempfile.TemporaryDirectory().name |
|
|
|
if self._log_checkpoints == "best" and not args.load_best_model_at_end: |
|
raise ValueError("To save the best model checkpoint, the load_best_model_at_end argument must be enabled.") |
|
|
|
def on_train_begin(self, args, state, control, model=None, **kwargs): |
|
if not state.is_world_process_zero: |
|
return |
|
|
|
self._ensure_run_with_monitoring() |
|
self._force_reset_monitoring_run = True |
|
|
|
self._log_integration_version() |
|
if self._log_parameters: |
|
self._log_trainer_parameters(args) |
|
self._log_model_parameters(model) |
|
|
|
if state.is_hyper_param_search: |
|
self._log_hyper_param_search_parameters(state) |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
self._stop_run_if_exists() |
|
|
|
def __del__(self): |
|
if self._volatile_checkpoints_dir is not None: |
|
shutil.rmtree(self._volatile_checkpoints_dir, ignore_errors=True) |
|
|
|
self._stop_run_if_exists() |
|
|
|
def on_save(self, args, state, control, **kwargs): |
|
if self._should_upload_checkpoint: |
|
self._log_model_checkpoint(args.output_dir, f"checkpoint-{state.global_step}") |
|
|
|
def on_evaluate(self, args, state, control, metrics=None, **kwargs): |
|
if self._log_checkpoints == "best": |
|
best_metric_name = args.metric_for_best_model |
|
if not best_metric_name.startswith("eval_"): |
|
best_metric_name = f"eval_{best_metric_name}" |
|
|
|
metric_value = metrics.get(best_metric_name) |
|
|
|
operator = np.greater if args.greater_is_better else np.less |
|
|
|
self._should_upload_checkpoint = state.best_metric is None or operator(metric_value, state.best_metric) |
|
|
|
@classmethod |
|
def get_run(cls, trainer): |
|
for callback in trainer.callback_handler.callbacks: |
|
if isinstance(callback, cls): |
|
return callback.run |
|
|
|
raise Exception("The trainer doesn't have a NeptuneCallback configured.") |
|
|
|
def on_log(self, args, state, control, logs: Optional[Dict[str, float]] = None, **kwargs): |
|
if not state.is_world_process_zero: |
|
return |
|
|
|
if logs is not None: |
|
for name, value in rewrite_logs(logs).items(): |
|
if isinstance(value, (int, float)): |
|
if name in NeptuneCallback.flat_metrics: |
|
self._metadata_namespace[name] = value |
|
else: |
|
self._metadata_namespace[name].log(value, step=state.global_step) |
|
|
|
|
|
class CodeCarbonCallback(TrainerCallback): |
|
""" |
|
A [`TrainerCallback`] that tracks the CO2 emission of training. |
|
""" |
|
|
|
def __init__(self): |
|
if not is_codecarbon_available(): |
|
raise RuntimeError( |
|
"CodeCarbonCallback requires `codecarbon` to be installed. Run `pip install codecarbon`." |
|
) |
|
elif torch.version.hip: |
|
raise RuntimeError( |
|
"CodeCarbonCallback requires `codecarbon` package, which is not compatible with AMD ROCm (https://github.com/mlco2/codecarbon/pull/490). When using the Trainer, please specify the `report_to` argument (https://huggingface.co/docs/transformers/v4.39.3/en/main_classes/trainer#transformers.TrainingArguments.report_to) to disable CodeCarbonCallback." |
|
) |
|
|
|
import codecarbon |
|
|
|
self._codecarbon = codecarbon |
|
self.tracker = None |
|
|
|
def on_init_end(self, args, state, control, **kwargs): |
|
if self.tracker is None and state.is_local_process_zero: |
|
|
|
self.tracker = self._codecarbon.EmissionsTracker(output_dir=args.output_dir) |
|
|
|
def on_train_begin(self, args, state, control, model=None, **kwargs): |
|
if self.tracker and state.is_local_process_zero: |
|
self.tracker.start() |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
if self.tracker and state.is_local_process_zero: |
|
self.tracker.stop() |
|
|
|
|
|
class ClearMLCallback(TrainerCallback): |
|
""" |
|
A [`TrainerCallback`] that sends the logs to [ClearML](https://clear.ml/). |
|
|
|
Environment: |
|
- **CLEARML_PROJECT** (`str`, *optional*, defaults to `HuggingFace Transformers`): |
|
ClearML project name. |
|
- **CLEARML_TASK** (`str`, *optional*, defaults to `Trainer`): |
|
ClearML task name. |
|
- **CLEARML_LOG_MODEL** (`bool`, *optional*, defaults to `False`): |
|
Whether to log models as artifacts during training. |
|
""" |
|
|
|
log_suffix = "" |
|
|
|
_hparams_section = "Transformers" |
|
_model_config_section = "Model Configuration" |
|
_ignore_hparams_overrides = "_ignore_hparams_ui_overrides_" |
|
_ignoge_model_config_overrides = "_ignore_model_config_ui_overrides_" |
|
_model_config_description = "The configuration of model number {}." |
|
_model_config_description_note = ( |
|
"Note that, when cloning this task and running it remotely," |
|
" the configuration might be applied to another model instead of this one." |
|
" To avoid this, initialize the task externally by calling `Task.init`" |
|
" before the `ClearMLCallback` is instantiated." |
|
) |
|
_train_run_counter = 0 |
|
_model_connect_counter = 0 |
|
_task_created_in_callback = False |
|
_should_close_on_train_end = None |
|
|
|
def __init__(self): |
|
if is_clearml_available(): |
|
import clearml |
|
|
|
self._clearml = clearml |
|
else: |
|
raise RuntimeError("ClearMLCallback requires 'clearml' to be installed. Run `pip install clearml`.") |
|
|
|
self._initialized = False |
|
self._clearml_task = None |
|
|
|
self._log_model = False |
|
self._checkpoints_saved = [] |
|
|
|
def setup(self, args, state, model, tokenizer, **kwargs): |
|
if self._clearml is None: |
|
return |
|
if self._initialized: |
|
return |
|
ClearMLCallback._train_run_counter += 1 |
|
ClearMLCallback._model_connect_counter += 1 |
|
ClearMLCallback.log_suffix = ( |
|
"" if ClearMLCallback._train_run_counter == 1 else "_" + str(ClearMLCallback._train_run_counter) |
|
) |
|
if state.is_world_process_zero: |
|
logger.info("Automatic ClearML logging enabled.") |
|
if self._clearml_task is None: |
|
if ClearMLCallback._should_close_on_train_end is None: |
|
if not self._clearml.Task.running_locally() or self._clearml.Task.current_task(): |
|
ClearMLCallback._should_close_on_train_end = False |
|
else: |
|
ClearMLCallback._should_close_on_train_end = True |
|
|
|
|
|
|
|
if self._clearml.Task.running_locally() and self._clearml.Task.current_task(): |
|
self._clearml_task = self._clearml.Task.current_task() |
|
self._log_model = os.getenv( |
|
"CLEARML_LOG_MODEL", |
|
"FALSE" if not ClearMLCallback._task_created_in_callback else "TRUE", |
|
).upper() in ENV_VARS_TRUE_VALUES.union({"TRUE"}) |
|
logger.info("External ClearML Task has been connected.") |
|
else: |
|
self._clearml_task = self._clearml.Task.init( |
|
project_name=os.getenv("CLEARML_PROJECT", "HuggingFace Transformers"), |
|
task_name=os.getenv("CLEARML_TASK", "Trainer"), |
|
auto_connect_frameworks={"tensorboard": False, "pytorch": False}, |
|
output_uri=True, |
|
) |
|
self._log_model = os.getenv("CLEARML_LOG_MODEL", "TRUE").upper() in ENV_VARS_TRUE_VALUES.union( |
|
{"TRUE"} |
|
) |
|
ClearMLCallback._task_created_in_callback = True |
|
logger.info("ClearML Task has been initialized.") |
|
self._initialized = True |
|
|
|
suffixed_hparams_section = ClearMLCallback._hparams_section + ClearMLCallback.log_suffix |
|
ignore_hparams_config_section = suffixed_hparams_section + "/" + ClearMLCallback._ignore_hparams_overrides |
|
if self._clearml.Task.running_locally(): |
|
self._copy_training_args_as_hparams(args, suffixed_hparams_section) |
|
self._clearml_task.set_parameter( |
|
name=ignore_hparams_config_section, |
|
value=True, |
|
value_type=bool, |
|
description=( |
|
"If True, ignore Transformers hyperparameters overrides done in the UI/backend " |
|
+ "when running remotely. Otherwise, the overrides will be applied when running remotely" |
|
), |
|
) |
|
elif not self._clearml_task.get_parameter(ignore_hparams_config_section, default=True, cast=True): |
|
self._clearml_task.connect(args, suffixed_hparams_section) |
|
else: |
|
self._copy_training_args_as_hparams( |
|
args, ClearMLCallback._hparams_section + ClearMLCallback.log_suffix |
|
) |
|
|
|
if getattr(model, "config", None) is not None: |
|
ignore_model_config_section = ( |
|
suffixed_hparams_section + "/" + ClearMLCallback._ignoge_model_config_overrides |
|
) |
|
configuration_object_description = ClearMLCallback._model_config_description.format( |
|
ClearMLCallback._model_connect_counter |
|
) |
|
if ClearMLCallback._model_connect_counter != ClearMLCallback._train_run_counter: |
|
configuration_object_description += " " + ClearMLCallback._model_config_description_note |
|
if self._clearml.Task.running_locally(): |
|
self._clearml_task.set_parameter( |
|
name=ignore_model_config_section, |
|
value=True, |
|
value_type=bool, |
|
description=( |
|
"If True, ignore Transformers model configuration overrides done in the UI/backend " |
|
+ "when running remotely. Otherwise, the overrides will be applied when running remotely" |
|
), |
|
) |
|
self._clearml_task.set_configuration_object( |
|
name=ClearMLCallback._model_config_section + ClearMLCallback.log_suffix, |
|
config_dict=model.config.to_dict(), |
|
description=configuration_object_description, |
|
) |
|
elif not self._clearml_task.get_parameter(ignore_model_config_section, default=True, cast=True): |
|
model.config = model.config.from_dict( |
|
self._clearml_task.get_configuration_object_as_dict( |
|
ClearMLCallback._model_config_section + ClearMLCallback.log_suffix |
|
) |
|
) |
|
else: |
|
self._clearml_task.set_configuration_object( |
|
name=ClearMLCallback._model_config_section + ClearMLCallback.log_suffix, |
|
config_dict=model.config.to_dict(), |
|
description=configuration_object_description, |
|
) |
|
|
|
def on_train_begin(self, args, state, control, model=None, tokenizer=None, **kwargs): |
|
if self._clearml is None: |
|
return |
|
self._checkpoints_saved = [] |
|
if state.is_hyper_param_search: |
|
self._initialized = False |
|
if not self._initialized: |
|
self.setup(args, state, model, tokenizer, **kwargs) |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
if ClearMLCallback._should_close_on_train_end: |
|
self._clearml_task.close() |
|
ClearMLCallback._train_run_counter = 0 |
|
|
|
def on_log(self, args, state, control, model=None, tokenizer=None, logs=None, **kwargs): |
|
if self._clearml is None: |
|
return |
|
if not self._initialized: |
|
self.setup(args, state, model, tokenizer, **kwargs) |
|
if state.is_world_process_zero: |
|
eval_prefix = "eval_" |
|
eval_prefix_len = len(eval_prefix) |
|
test_prefix = "test_" |
|
test_prefix_len = len(test_prefix) |
|
single_value_scalars = [ |
|
"train_runtime", |
|
"train_samples_per_second", |
|
"train_steps_per_second", |
|
"train_loss", |
|
"total_flos", |
|
"epoch", |
|
] |
|
for k, v in logs.items(): |
|
if isinstance(v, (int, float)): |
|
if k in single_value_scalars: |
|
self._clearml_task.get_logger().report_single_value( |
|
name=k + ClearMLCallback.log_suffix, value=v |
|
) |
|
elif k.startswith(eval_prefix): |
|
self._clearml_task.get_logger().report_scalar( |
|
title="eval" + ClearMLCallback.log_suffix, |
|
series=k[eval_prefix_len:], |
|
value=v, |
|
iteration=state.global_step, |
|
) |
|
elif k.startswith(test_prefix): |
|
self._clearml_task.get_logger().report_scalar( |
|
title="test" + ClearMLCallback.log_suffix, |
|
series=k[test_prefix_len:], |
|
value=v, |
|
iteration=state.global_step, |
|
) |
|
else: |
|
self._clearml_task.get_logger().report_scalar( |
|
title="train" + ClearMLCallback.log_suffix, |
|
series=k, |
|
value=v, |
|
iteration=state.global_step, |
|
) |
|
else: |
|
logger.warning( |
|
"Trainer is attempting to log a value of " |
|
f'"{v}" of type {type(v)} for key "{k}" as a scalar. ' |
|
"This invocation of ClearML logger's report_scalar() " |
|
"is incorrect so we dropped this attribute." |
|
) |
|
|
|
def on_save(self, args, state, control, **kwargs): |
|
if self._log_model and self._clearml_task and state.is_world_process_zero: |
|
ckpt_dir = f"checkpoint-{state.global_step}" |
|
artifact_path = os.path.join(args.output_dir, ckpt_dir) |
|
name = ckpt_dir + ClearMLCallback.log_suffix |
|
logger.info(f"Logging checkpoint artifact `{name}`. This may take some time.") |
|
output_model = self._clearml.OutputModel(task=self._clearml_task, name=name) |
|
output_model.connect(task=self._clearml_task, name=name) |
|
output_model.update_weights_package( |
|
weights_path=artifact_path, |
|
target_filename=ckpt_dir, |
|
iteration=state.global_step, |
|
auto_delete_file=False, |
|
) |
|
self._checkpoints_saved.append(output_model) |
|
while args.save_total_limit and args.save_total_limit < len(self._checkpoints_saved): |
|
try: |
|
self._clearml.model.Model.remove( |
|
self._checkpoints_saved[0], |
|
delete_weights_file=True, |
|
force=True, |
|
raise_on_errors=True, |
|
) |
|
except Exception as e: |
|
logger.warning( |
|
"Could not remove checkpoint `{}` after going over the `save_total_limit`. Error is: {}".format( |
|
self._checkpoints_saved[0].name, e |
|
) |
|
) |
|
break |
|
self._checkpoints_saved = self._checkpoints_saved[1:] |
|
|
|
def _copy_training_args_as_hparams(self, training_args, prefix): |
|
as_dict = { |
|
field.name: getattr(training_args, field.name) |
|
for field in fields(training_args) |
|
if field.init and not field.name.endswith("_token") |
|
} |
|
flat_dict = {str(k): v for k, v in self._clearml.utilities.proxy_object.flatten_dictionary(as_dict).items()} |
|
self._clearml_task._arguments.copy_from_dict(flat_dict, prefix=prefix) |
|
|
|
|
|
class FlyteCallback(TrainerCallback): |
|
"""A [`TrainerCallback`] that sends the logs to [Flyte](https://flyte.org/). |
|
NOTE: This callback only works within a Flyte task. |
|
|
|
Args: |
|
save_log_history (`bool`, *optional*, defaults to `True`): |
|
When set to True, the training logs are saved as a Flyte Deck. |
|
|
|
sync_checkpoints (`bool`, *optional*, defaults to `True`): |
|
When set to True, checkpoints are synced with Flyte and can be used to resume training in the case of an |
|
interruption. |
|
|
|
Example: |
|
|
|
```python |
|
# Note: This example skips over some setup steps for brevity. |
|
from flytekit import current_context, task |
|
|
|
|
|
@task |
|
def train_hf_transformer(): |
|
cp = current_context().checkpoint |
|
trainer = Trainer(..., callbacks=[FlyteCallback()]) |
|
output = trainer.train(resume_from_checkpoint=cp.restore()) |
|
``` |
|
""" |
|
|
|
def __init__(self, save_log_history: bool = True, sync_checkpoints: bool = True): |
|
super().__init__() |
|
if not is_flytekit_available(): |
|
raise ImportError("FlyteCallback requires flytekit to be installed. Run `pip install flytekit`.") |
|
|
|
if not is_flyte_deck_standard_available() or not is_pandas_available(): |
|
logger.warning( |
|
"Syncing log history requires both flytekitplugins-deck-standard and pandas to be installed. " |
|
"Run `pip install flytekitplugins-deck-standard pandas` to enable this feature." |
|
) |
|
save_log_history = False |
|
|
|
from flytekit import current_context |
|
|
|
self.cp = current_context().checkpoint |
|
self.save_log_history = save_log_history |
|
self.sync_checkpoints = sync_checkpoints |
|
|
|
def on_save(self, args, state, control, **kwargs): |
|
if self.sync_checkpoints and state.is_world_process_zero: |
|
ckpt_dir = f"checkpoint-{state.global_step}" |
|
artifact_path = os.path.join(args.output_dir, ckpt_dir) |
|
|
|
logger.info(f"Syncing checkpoint in {ckpt_dir} to Flyte. This may take time.") |
|
self.cp.save(artifact_path) |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
if self.save_log_history: |
|
import pandas as pd |
|
from flytekit import Deck |
|
from flytekitplugins.deck.renderer import TableRenderer |
|
|
|
log_history_df = pd.DataFrame(state.log_history) |
|
Deck("Log History", TableRenderer().to_html(log_history_df)) |
|
|
|
|
|
class DVCLiveCallback(TrainerCallback): |
|
""" |
|
A [`TrainerCallback`] that sends the logs to [DVCLive](https://www.dvc.org/doc/dvclive). |
|
|
|
Use the environment variables below in `setup` to configure the integration. To customize this callback beyond |
|
those environment variables, see [here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface). |
|
|
|
Args: |
|
live (`dvclive.Live`, *optional*, defaults to `None`): |
|
Optional Live instance. If None, a new instance will be created using **kwargs. |
|
log_model (Union[Literal["all"], bool], *optional*, defaults to `None`): |
|
Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True`, |
|
the final checkpoint is logged at the end of training. If set to `"all"`, the entire |
|
[`TrainingArguments`]'s `output_dir` is logged at each checkpoint. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
live: Optional[Any] = None, |
|
log_model: Optional[Union[Literal["all"], bool]] = None, |
|
**kwargs, |
|
): |
|
if not is_dvclive_available(): |
|
raise RuntimeError("DVCLiveCallback requires dvclive to be installed. Run `pip install dvclive`.") |
|
from dvclive import Live |
|
|
|
self._initialized = False |
|
self.live = None |
|
if isinstance(live, Live): |
|
self.live = live |
|
elif live is not None: |
|
raise RuntimeError(f"Found class {live.__class__} for live, expected dvclive.Live") |
|
|
|
self._log_model = log_model |
|
if self._log_model is None: |
|
log_model_env = os.getenv("HF_DVCLIVE_LOG_MODEL", "FALSE") |
|
if log_model_env.upper() in ENV_VARS_TRUE_VALUES: |
|
self._log_model = True |
|
elif log_model_env.lower() == "all": |
|
self._log_model = "all" |
|
|
|
def setup(self, args, state, model): |
|
""" |
|
Setup the optional DVCLive integration. To customize this callback beyond the environment variables below, see |
|
[here](https://dvc.org/doc/dvclive/ml-frameworks/huggingface). |
|
|
|
Environment: |
|
- **HF_DVCLIVE_LOG_MODEL** (`str`, *optional*): |
|
Whether to use `dvclive.Live.log_artifact()` to log checkpoints created by [`Trainer`]. If set to `True` or |
|
*1*, the final checkpoint is logged at the end of training. If set to `all`, the entire |
|
[`TrainingArguments`]'s `output_dir` is logged at each checkpoint. |
|
""" |
|
from dvclive import Live |
|
|
|
self._initialized = True |
|
if state.is_world_process_zero: |
|
if not self.live: |
|
self.live = Live() |
|
self.live.log_params(args.to_dict()) |
|
|
|
def on_train_begin(self, args, state, control, model=None, **kwargs): |
|
if not self._initialized: |
|
self.setup(args, state, model) |
|
|
|
def on_log(self, args, state, control, model=None, logs=None, **kwargs): |
|
if not self._initialized: |
|
self.setup(args, state, model) |
|
if state.is_world_process_zero: |
|
from dvclive.plots import Metric |
|
from dvclive.utils import standardize_metric_name |
|
|
|
for key, value in logs.items(): |
|
if Metric.could_log(value): |
|
self.live.log_metric(standardize_metric_name(key, "dvclive.huggingface"), value) |
|
else: |
|
logger.warning( |
|
"Trainer is attempting to log a value of " |
|
f'"{value}" of type {type(value)} for key "{key}" as a scalar. ' |
|
"This invocation of DVCLive's Live.log_metric() " |
|
"is incorrect so we dropped this attribute." |
|
) |
|
self.live.next_step() |
|
|
|
def on_save(self, args, state, control, **kwargs): |
|
if self._log_model == "all" and self._initialized and state.is_world_process_zero: |
|
self.live.log_artifact(args.output_dir) |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
if self._initialized and state.is_world_process_zero: |
|
from transformers.trainer import Trainer |
|
|
|
if self._log_model is True: |
|
fake_trainer = Trainer(args=args, model=kwargs.get("model"), processing_class=kwargs.get("tokenizer")) |
|
name = "best" if args.load_best_model_at_end else "last" |
|
output_dir = os.path.join(args.output_dir, name) |
|
fake_trainer.save_model(output_dir) |
|
self.live.log_artifact(output_dir, name=name, type="model", copy=True) |
|
self.live.end() |
|
|
|
|
|
INTEGRATION_TO_CALLBACK = { |
|
"azure_ml": AzureMLCallback, |
|
"comet_ml": CometCallback, |
|
"mlflow": MLflowCallback, |
|
"neptune": NeptuneCallback, |
|
"tensorboard": TensorBoardCallback, |
|
"wandb": WandbCallback, |
|
"codecarbon": CodeCarbonCallback, |
|
"clearml": ClearMLCallback, |
|
"dagshub": DagsHubCallback, |
|
"flyte": FlyteCallback, |
|
"dvclive": DVCLiveCallback, |
|
} |
|
|
|
|
|
def get_reporting_integration_callbacks(report_to): |
|
for integration in report_to: |
|
if integration not in INTEGRATION_TO_CALLBACK: |
|
raise ValueError( |
|
f"{integration} is not supported, only {', '.join(INTEGRATION_TO_CALLBACK.keys())} are supported." |
|
) |
|
|
|
return [INTEGRATION_TO_CALLBACK[integration] for integration in report_to] |
|
|