|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Integration with GGML / The file is copied and adapted from https://github.com/99991/pygguf |
|
with extra methods beings exposed |
|
""" |
|
|
|
from array import array |
|
|
|
import numpy as np |
|
from tokenizers import Tokenizer, decoders, normalizers, pre_tokenizers |
|
from tokenizers.models import BPE |
|
|
|
from .. import AddedToken |
|
from ..convert_slow_tokenizer import GPT2Converter, LlamaConverter, Qwen2Converter |
|
from ..utils import logging |
|
from ..utils.logging import tqdm |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
GGUF_TENSOR_MAPPING = { |
|
"llama": { |
|
"token_embd": "model.embed_tokens", |
|
"blk": "model.layers", |
|
"ffn_up": "mlp.up_proj", |
|
"ffn_down": "mlp.down_proj", |
|
"ffn_gate": "mlp.gate_proj", |
|
"ffn_norm": "post_attention_layernorm", |
|
"attn_norm": "input_layernorm", |
|
"attn_q": "self_attn.q_proj", |
|
"attn_v": "self_attn.v_proj", |
|
"attn_k": "self_attn.k_proj", |
|
"attn_output": "self_attn.o_proj", |
|
"output.weight": "lm_head.weight", |
|
"output_norm": "model.norm", |
|
}, |
|
"mistral": { |
|
"token_embd": "model.embed_tokens", |
|
"blk": "model.layers", |
|
"ffn_up": "mlp.up_proj", |
|
"ffn_down": "mlp.down_proj", |
|
"ffn_gate": "mlp.gate_proj", |
|
"ffn_norm": "post_attention_layernorm", |
|
"attn_norm": "input_layernorm", |
|
"attn_q": "self_attn.q_proj", |
|
"attn_v": "self_attn.v_proj", |
|
"attn_k": "self_attn.k_proj", |
|
"attn_output": "self_attn.o_proj", |
|
"output.weight": "lm_head.weight", |
|
"output_norm": "model.norm", |
|
}, |
|
"qwen2": { |
|
"token_embd": "model.embed_tokens", |
|
"blk": "model.layers", |
|
"ffn_up": "mlp.up_proj", |
|
"ffn_down": "mlp.down_proj", |
|
"ffn_gate": "mlp.gate_proj", |
|
"ffn_norm": "post_attention_layernorm", |
|
"attn_norm": "input_layernorm", |
|
"attn_q": "self_attn.q_proj", |
|
"attn_v": "self_attn.v_proj", |
|
"attn_k": "self_attn.k_proj", |
|
"attn_output": "self_attn.o_proj", |
|
"output.weight": "lm_head.weight", |
|
"output_norm": "model.norm", |
|
}, |
|
"qwen2moe": { |
|
"token_embd": "model.embed_tokens", |
|
"blk": "model.layers", |
|
"ffn_up_exps": "mlp.experts", |
|
"ffn_up_shexp": "mlp.shared_expert.up_proj", |
|
"ffn_down_exps": "mlp.experts", |
|
"ffn_down_shexp": "mlp.shared_expert.down_proj", |
|
"ffn_norm": "post_attention_layernorm", |
|
"ffn_gate_inp.weight": "mlp.gate.weight", |
|
"ffn_gate_exps": "mlp.experts", |
|
"ffn_gate_shexp": "mlp.shared_expert.gate_proj", |
|
"ffn_gate_inp_shexp": "mlp.shared_expert_gate", |
|
"attn_norm": "input_layernorm", |
|
"attn_q": "self_attn.q_proj", |
|
"attn_v": "self_attn.v_proj", |
|
"attn_k": "self_attn.k_proj", |
|
"attn_output": "self_attn.o_proj", |
|
"output.weight": "lm_head.weight", |
|
"output_norm": "model.norm", |
|
}, |
|
"phi3": { |
|
"token_embd": "model.embed_tokens", |
|
"blk": "model.layers", |
|
"ffn_up": "mlp.gate_up_proj", |
|
"ffn_down": "mlp.down_proj", |
|
"ffn_gate": "mlp.gate_up_proj", |
|
"ffn_norm": "post_attention_layernorm", |
|
"attn_norm": "input_layernorm", |
|
"attn_qkv": "self_attn.qkv_proj", |
|
"attn_output": "self_attn.o_proj", |
|
"output.weight": "lm_head.weight", |
|
"output_norm": "model.norm", |
|
}, |
|
"bloom": { |
|
"token_embd.weight": "transformer.word_embeddings.weight", |
|
"token_embd_norm": "transformer.word_embeddings_layernorm", |
|
"blk": "transformer.h", |
|
"ffn_up": "mlp.dense_h_to_4h", |
|
"ffn_down": "mlp.dense_4h_to_h", |
|
"ffn_norm": "post_attention_layernorm", |
|
"attn_norm": "input_layernorm", |
|
"attn_qkv": "self_attention.query_key_value", |
|
"attn_output": "self_attention.dense", |
|
"output.weight": "lm_head.weight", |
|
"output_norm": "transformer.ln_f", |
|
}, |
|
"falcon7b": { |
|
"token_embd": "word_embeddings", |
|
"blk": "h", |
|
"ffn_up": "mlp.dense_h_to_4h", |
|
"ffn_down": "mlp.dense_4h_to_h", |
|
"attn_norm": "input_layernorm", |
|
"attn_qkv": "self_attention.query_key_value", |
|
"attn_output": "self_attention.dense", |
|
".output.": ".lm_head.", |
|
"output_norm": "ln_f", |
|
}, |
|
"falcon40b": { |
|
"token_embd": "word_embeddings", |
|
"blk": "h", |
|
"ffn_up": "mlp.dense_h_to_4h", |
|
"ffn_down": "mlp.dense_4h_to_h", |
|
".attn_norm.": ".ln_mlp.", |
|
"attn_norm_2": "ln_attn", |
|
"attn_qkv": "self_attention.query_key_value", |
|
"attn_output": "self_attention.dense", |
|
".output.": ".lm_head.", |
|
"output_norm": "ln_f", |
|
}, |
|
"stablelm": { |
|
"token_embd": "model.embed_tokens", |
|
"blk": "model.layers", |
|
"ffn_up": "mlp.up_proj", |
|
"ffn_down": "mlp.down_proj", |
|
"ffn_gate": "mlp.gate_proj", |
|
"ffn_norm": "post_attention_layernorm", |
|
"attn_norm": "input_layernorm", |
|
"attn_q": "self_attn.q_proj", |
|
"attn_v": "self_attn.v_proj", |
|
"attn_k": "self_attn.k_proj", |
|
"attn_output": "self_attn.o_proj", |
|
"output.weight": "lm_head.weight", |
|
"output_norm": "model.norm", |
|
}, |
|
"gpt2": { |
|
"token_embd": "transformer.wte", |
|
"blk": "transformer.h", |
|
"position_embd": "transformer.wpe", |
|
"output_norm": "transformer.ln_f", |
|
"attn_norm": "ln_1", |
|
"attn_qkv": "attn.c_attn", |
|
"attn_output.weight": "attn.c_proj.weight", |
|
"attn_output.bias": "attn.c_proj.bias", |
|
"ffn_norm": "ln_2", |
|
"ffn_up": "mlp.c_fc", |
|
"ffn_down": "mlp.c_proj", |
|
}, |
|
"starcoder2": { |
|
"token_embd": "model.embed_tokens", |
|
"blk": "model.layers", |
|
"ffn_up": "mlp.c_fc", |
|
"ffn_down": "mlp.c_proj", |
|
"ffn_norm": "post_attention_layernorm", |
|
"attn_norm": "input_layernorm", |
|
"attn_q": "self_attn.q_proj", |
|
"attn_v": "self_attn.v_proj", |
|
"attn_k": "self_attn.k_proj", |
|
"attn_output": "self_attn.o_proj", |
|
"output.weight": "lm_head.weight", |
|
"output_norm": "model.norm", |
|
}, |
|
} |
|
|
|
|
|
GGUF_CONFIG_MAPPING = { |
|
"general": { |
|
"architecture": "model_type", |
|
"name": "_model_name_or_path", |
|
}, |
|
"llama": { |
|
"context_length": "max_position_embeddings", |
|
"block_count": "num_hidden_layers", |
|
"feed_forward_length": "intermediate_size", |
|
"embedding_length": "hidden_size", |
|
|
|
"rope.dimension_count": "head_dim", |
|
"rope.freq_base": "rope_theta", |
|
"attention.head_count": "num_attention_heads", |
|
"attention.head_count_kv": "num_key_value_heads", |
|
"attention.layer_norm_rms_epsilon": "rms_norm_eps", |
|
"vocab_size": "vocab_size", |
|
}, |
|
"mistral": { |
|
"context_length": "max_position_embeddings", |
|
"block_count": "num_hidden_layers", |
|
"feed_forward_length": "intermediate_size", |
|
"embedding_length": "hidden_size", |
|
|
|
"rope.dimension_count": "head_dim", |
|
"rope.freq_base": "rope_theta", |
|
"attention.head_count": "num_attention_heads", |
|
"attention.head_count_kv": "num_key_value_heads", |
|
"attention.layer_norm_rms_epsilon": "rms_norm_eps", |
|
"vocab_size": "vocab_size", |
|
}, |
|
"qwen2": { |
|
"context_length": "max_position_embeddings", |
|
"block_count": "num_hidden_layers", |
|
"feed_forward_length": "intermediate_size", |
|
"embedding_length": "hidden_size", |
|
"rope.dimension_count": None, |
|
"rope.freq_base": "rope_theta", |
|
"attention.head_count": "num_attention_heads", |
|
"attention.head_count_kv": "num_key_value_heads", |
|
"attention.layer_norm_rms_epsilon": "rms_norm_eps", |
|
"vocab_size": "vocab_size", |
|
}, |
|
"qwen2moe": { |
|
"context_length": "max_position_embeddings", |
|
"block_count": "num_hidden_layers", |
|
"feed_forward_length": "intermediate_size", |
|
"embedding_length": "hidden_size", |
|
"rope.dimension_count": None, |
|
"rope.freq_base": "rope_theta", |
|
"attention.head_count": "num_attention_heads", |
|
"attention.head_count_kv": "num_key_value_heads", |
|
"attention.layer_norm_rms_epsilon": "rms_norm_eps", |
|
"vocab_size": "vocab_size", |
|
"expert_count": "num_experts", |
|
"expert_used_count": "num_experts_per_tok", |
|
}, |
|
"falcon": { |
|
"context_length": "max_position_embeddings", |
|
"block_count": "num_hidden_layers", |
|
"feed_forward_length": "intermediate_size", |
|
"embedding_length": "hidden_size", |
|
"rope.dimension_count": None, |
|
"rope.freq_base": "rope_theta", |
|
"attention.head_count": "num_attention_heads", |
|
"attention.head_count_kv": "num_key_value_heads", |
|
"attention.layer_norm_rms_epsilon": "rms_norm_eps", |
|
"vocab_size": "vocab_size", |
|
}, |
|
"tokenizer": { |
|
"ggml.bos_token_id": "bos_token_id", |
|
"ggml.eos_token_id": "eos_token_id", |
|
"ggml.unknown_token_id": "unk_token_id", |
|
"ggml.padding_token_id": "pad_token_id", |
|
}, |
|
"phi3": { |
|
"context_length": "max_position_embeddings", |
|
"block_count": "num_hidden_layers", |
|
"feed_forward_length": "intermediate_size", |
|
"embedding_length": "hidden_size", |
|
"rope.dimension_count": None, |
|
"rope.freq_base": "rope_theta", |
|
"attention.head_count": "num_attention_heads", |
|
"attention.head_count_kv": "num_key_value_heads", |
|
"attention.layer_norm_rms_epsilon": "rms_norm_eps", |
|
"vocab_size": "vocab_size", |
|
}, |
|
"bloom": { |
|
"block_count": "n_layer", |
|
"embedding_length": "hidden_size", |
|
"attention.head_count": "n_head", |
|
"vocab_size": "vocab_size", |
|
"attention.layer_norm_epsilon": "layer_norm_epsilon", |
|
}, |
|
"stablelm": { |
|
"context_length": "max_position_embeddings", |
|
"block_count": "num_hidden_layers", |
|
"feed_forward_length": "intermediate_size", |
|
"embedding_length": "hidden_size", |
|
"rope.dimension_count": None, |
|
"attention.head_count": "num_attention_heads", |
|
"attention.head_count_kv": "num_key_value_heads", |
|
"attention.layer_norm_epsilon": "layer_norm_eps", |
|
"vocab_size": "vocab_size", |
|
}, |
|
"gpt2": { |
|
"block_count": "n_layer", |
|
"context_length": "n_ctx", |
|
"embedding_length": "n_embd", |
|
"feed_forward_length": "feed_forward_length", |
|
"attention.head_count": "n_head", |
|
"attention.layer_norm_epsilon": "layer_norm_epsilon", |
|
}, |
|
"starcoder2": { |
|
"block_count": "num_hidden_layers", |
|
"context_length": "max_position_embeddings", |
|
"embedding_length": "hidden_size", |
|
"feed_forward_length": "intermediate_size", |
|
"attention.head_count": "num_attention_heads", |
|
"attention.head_count_kv": "num_key_value_heads", |
|
"attention.layer_norm_epsilon": "norm_epsilon", |
|
}, |
|
} |
|
|
|
GGUF_TOKENIZER_MAPPING = { |
|
"tokenizer": { |
|
"ggml.model": "tokenizer_type", |
|
"ggml.tokens": "tokens", |
|
"ggml.scores": "scores", |
|
"ggml.token_type": "token_type", |
|
"ggml.merges": "merges", |
|
"ggml.bos_token_id": "bos_token_id", |
|
"ggml.eos_token_id": "eos_token_id", |
|
"ggml.unknown_token_id": "unk_token_id", |
|
"ggml.padding_token_id": "pad_token_id", |
|
"ggml.add_space_prefix": "add_prefix_space", |
|
}, |
|
"tokenizer_config": { |
|
"chat_template": "chat_template", |
|
"ggml.model": "model_type", |
|
"ggml.bos_token_id": "bos_token_id", |
|
"ggml.eos_token_id": "eos_token_id", |
|
"ggml.unknown_token_id": "unk_token_id", |
|
"ggml.padding_token_id": "pad_token_id", |
|
}, |
|
} |
|
|
|
|
|
def _gguf_parse_value(_value, data_type): |
|
if not isinstance(data_type, list): |
|
data_type = [data_type] |
|
if len(data_type) == 1: |
|
data_type = data_type[0] |
|
array_data_type = None |
|
else: |
|
if data_type[0] != 9: |
|
raise ValueError("Received multiple types, therefore expected the first type to indicate an array.") |
|
data_type, array_data_type = data_type |
|
|
|
if data_type in [0, 1, 2, 3, 4, 5, 10, 11]: |
|
_value = int(_value[0]) |
|
elif data_type in [6, 12]: |
|
_value = float(_value[0]) |
|
elif data_type in [7]: |
|
_value = bool(_value[0]) |
|
elif data_type in [8]: |
|
_value = array("B", list(_value)).tobytes().decode() |
|
elif data_type in [9]: |
|
_value = _gguf_parse_value(_value, array_data_type) |
|
return _value |
|
|
|
|
|
class GGUFTokenizerSkeleton: |
|
def __init__(self, dict_): |
|
for k, v in dict_.items(): |
|
setattr(self, k, v) |
|
|
|
if not hasattr(self, "merges"): |
|
if not hasattr(self, "tokens") or not hasattr(self, "scores"): |
|
raise ValueError( |
|
"tokens and scores need to be passed for a LLaMa tokenizer without merges to be instantiated." |
|
) |
|
tokens = self.tokens |
|
scores = self.scores |
|
vocab = {t: scores[i] for i, t in enumerate(tokens)} |
|
|
|
logger.warning("Merges were not in checkpoint, building merges on the fly.") |
|
merges = [] |
|
for merge, piece_score in tqdm(vocab.items()): |
|
local = [] |
|
for index in range(1, len(merge)): |
|
piece_l, piece_r = merge[:index], merge[index:] |
|
if piece_l in tokens and piece_r in tokens: |
|
local.append((piece_l, piece_r, piece_score)) |
|
local = sorted(local, key=lambda x: (vocab[x[0]], vocab[x[1]]), reverse=True) |
|
merges.extend(local) |
|
merges = sorted(merges, key=lambda val: val[2], reverse=True) |
|
merges = [(val[0], val[1]) for val in merges] |
|
self.merges = merges |
|
else: |
|
self.merges = [tuple(merge.split(" ")) for merge in self.merges] |
|
if not hasattr(self, "scores"): |
|
self.scores = [None for _ in range(len(self.tokens))] |
|
|
|
if not hasattr(self, "added_tokens"): |
|
self.added_tokens = [] |
|
|
|
if not hasattr(self, "unk_token_id"): |
|
self.unk_token_id = None |
|
|
|
|
|
if hasattr(self, "unknown_token_id") and self.unk_token_id is None: |
|
self.unk_token_id = self.unknown_token_id |
|
|
|
|
|
class GGUFLlamaConverter(LlamaConverter): |
|
def __init__(self, tokenizer_dict): |
|
self.proto = GGUFTokenizerSkeleton(tokenizer_dict) |
|
self.original_tokenizer = self.proto |
|
self.additional_kwargs = {} |
|
self.is_llama_3_tokenizer = getattr(self.proto, "tokenizer_type", "llama") != "llama" |
|
|
|
def vocab(self, proto): |
|
return list(zip(proto.tokens, proto.scores)) |
|
|
|
def merges(self, proto): |
|
return proto.merges |
|
|
|
def tokenizer(self, proto): |
|
vocab_scores = self.vocab(self.proto) |
|
merges = self.merges(self.proto) |
|
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)} |
|
|
|
unk_token = proto.tokens[proto.unk_token_id] if proto.unk_token_id is not None else None |
|
bos_token = proto.tokens[proto.bos_token_id] if getattr(proto, "bos_token_id", None) is not None else None |
|
eos_token = proto.tokens[proto.bos_token_id] if getattr(proto, "eos_token_id", None) is not None else None |
|
|
|
tokenizer = Tokenizer( |
|
BPE( |
|
bpe_vocab, |
|
merges, |
|
unk_token=unk_token, |
|
fuse_unk=True, |
|
byte_fallback=True, |
|
) |
|
) |
|
|
|
special_tokens = [] |
|
|
|
if not hasattr(self.proto, "token_type"): |
|
if unk_token is not None: |
|
special_tokens.append(AddedToken(unk_token, normalized=False, special=True)) |
|
|
|
if bos_token is not None: |
|
special_tokens.append(AddedToken(bos_token, normalized=False, special=True)) |
|
|
|
if eos_token is not None: |
|
special_tokens.append(AddedToken(eos_token, normalized=False, special=True)) |
|
else: |
|
|
|
special_tokens_idx = np.where(np.array(self.proto.token_type) == 3)[0] |
|
|
|
for idx in special_tokens_idx: |
|
special_tokens.append(AddedToken(self.proto.tokens[idx], normalized=False, special=True)) |
|
|
|
if len(special_tokens) != 0: |
|
tokenizer.add_special_tokens(special_tokens) |
|
|
|
if len(self.proto.added_tokens) != 0: |
|
tokenizer.add_tokens( |
|
[AddedToken(added_token, normalized=False, special=False) for added_token in self.proto.added_tokens] |
|
) |
|
|
|
self.additional_kwargs["unk_token"] = unk_token |
|
self.additional_kwargs["eos_token"] = bos_token |
|
self.additional_kwargs["bos_token"] = eos_token |
|
|
|
if self.is_llama_3_tokenizer: |
|
self.additional_kwargs["add_prefix_space"] = None |
|
self.additional_kwargs["clean_up_tokenization_spaces"] = True |
|
|
|
self.additional_kwargs["legacy"] = False |
|
self.original_tokenizer.legacy = False |
|
|
|
return tokenizer |
|
|
|
def decoder(self, replacement, add_prefix_space): |
|
sequence = [ |
|
decoders.ByteFallback(), |
|
decoders.Fuse(), |
|
decoders.Replace("β", " "), |
|
] |
|
|
|
if self.is_llama_3_tokenizer: |
|
sequence += [decoders.ByteLevel(add_prefix_space=False, trim_offsets=False, use_regex=True)] |
|
|
|
if add_prefix_space: |
|
sequence += [decoders.Strip(content=" ", left=1)] |
|
return decoders.Sequence(sequence) |
|
|
|
def converted(self): |
|
|
|
tokenizer = self.tokenizer(self.proto) |
|
|
|
|
|
normalizer = self.normalizer(self.proto) |
|
if normalizer is not None: |
|
tokenizer.normalizer = normalizer |
|
|
|
replacement = "β" |
|
add_prefix_space = True |
|
if hasattr(self.original_tokenizer, "add_prefix_space"): |
|
add_prefix_space = self.original_tokenizer.add_prefix_space |
|
|
|
pre_tokenizer = self.pre_tokenizer(replacement, add_prefix_space) |
|
if pre_tokenizer is not None: |
|
tokenizer.pre_tokenizer = pre_tokenizer |
|
|
|
tokenizer.decoder = self.decoder(replacement, add_prefix_space) |
|
post_processor = self.post_processor() |
|
if post_processor: |
|
tokenizer.post_processor = post_processor |
|
|
|
|
|
|
|
if self.is_llama_3_tokenizer: |
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel( |
|
add_prefix_space=False, trim_offsets=False, use_regex=True |
|
) |
|
|
|
|
|
tokenizer.normalizer = normalizers.Sequence([]) |
|
|
|
return tokenizer |
|
|
|
|
|
class GGUFQwen2Converter(Qwen2Converter): |
|
def __init__(self, tokenizer_dict): |
|
self.original_tokenizer = GGUFTokenizerSkeleton(tokenizer_dict) |
|
self.additional_kwargs = {} |
|
|
|
def converted(self) -> Tokenizer: |
|
vocab = {word: i for i, word in enumerate(self.original_tokenizer.tokens)} |
|
merges = self.original_tokenizer.merges |
|
tokenizer = super().converted(vocab, merges) |
|
|
|
tokenizer.add_special_tokens( |
|
[ |
|
AddedToken("<|endoftext|>", normalized=False, special=True), |
|
AddedToken("<|im_start|>", normalized=False, special=True), |
|
AddedToken("<|im_end|>", normalized=False, special=True), |
|
] |
|
) |
|
return tokenizer |
|
|
|
|
|
class GGUFPhi3Converter(LlamaConverter): |
|
def __init__(self, tokenizer_dict): |
|
self.proto = GGUFTokenizerSkeleton(tokenizer_dict) |
|
self.original_tokenizer = self.proto |
|
self.additional_kwargs = {} |
|
|
|
def vocab(self, proto): |
|
return list(zip(proto.tokens, proto.scores)) |
|
|
|
def merges(self, proto): |
|
return proto.merges |
|
|
|
def tokenizer(self, proto): |
|
vocab_scores = self.vocab(self.proto) |
|
merges = self.merges(self.proto) |
|
bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)} |
|
|
|
tokenizer = Tokenizer(BPE(bpe_vocab, merges)) |
|
|
|
tokenizer.add_special_tokens( |
|
[ |
|
AddedToken("</s>", rstrip=True, lstrip=False, normalized=False, special=True), |
|
AddedToken("<|endoftext|>", normalized=False, special=True), |
|
AddedToken("<|assistant|>", rstrip=True, normalized=False, special=True), |
|
AddedToken("<|placeholder1|>", rstrip=True, normalized=False, special=True), |
|
AddedToken("<|placeholder2|>", rstrip=True, normalized=False, special=True), |
|
AddedToken("<|placeholder3|>", rstrip=True, normalized=False, special=True), |
|
AddedToken("<|placeholder4|>", rstrip=True, normalized=False, special=True), |
|
AddedToken("<|system|>", rstrip=True, normalized=False, special=True), |
|
AddedToken("<|end|>", rstrip=True, normalized=False, special=True), |
|
AddedToken("<|placeholder5|>", rstrip=True, normalized=False, special=True), |
|
AddedToken("<|placeholder6|>", rstrip=True, normalized=False, special=True), |
|
AddedToken("<|user|>", rstrip=True, normalized=False, special=True), |
|
] |
|
) |
|
|
|
self.additional_kwargs["unk_token"] = ( |
|
proto.tokens[proto.unk_token_id] if proto.unk_token_id is not None else None |
|
) |
|
self.additional_kwargs["eos_token"] = ( |
|
proto.tokens[proto.eos_token_id] if proto.eos_token_id is not None else None |
|
) |
|
self.additional_kwargs["bos_token"] = ( |
|
proto.tokens[proto.bos_token_id] if proto.bos_token_id is not None else None |
|
) |
|
self.additional_kwargs["pad_token"] = ( |
|
proto.tokens[proto.pad_token_id] if proto.pad_token_id is not None else None |
|
) |
|
|
|
return tokenizer |
|
|
|
def decoder(self, replacement, add_prefix_space): |
|
sequence = [ |
|
decoders.ByteFallback(), |
|
decoders.Fuse(), |
|
decoders.Replace(replacement, " "), |
|
] |
|
|
|
if add_prefix_space: |
|
sequence += [decoders.Strip(content=" ", left=1)] |
|
return decoders.Sequence(sequence) |
|
|
|
def converted(self) -> Tokenizer: |
|
tokenizer = self.tokenizer(self.proto) |
|
|
|
replacement = "β" |
|
add_prefix_space = True |
|
if hasattr(self.original_tokenizer, "add_prefix_space"): |
|
add_prefix_space = self.original_tokenizer.add_prefix_space |
|
|
|
tokenizer.decoder = self.decoder(replacement, add_prefix_space) |
|
|
|
return tokenizer |
|
|
|
|
|
class GGUFGPTConverter(GPT2Converter): |
|
def __init__(self, tokenizer_dict): |
|
self.original_tokenizer = GGUFTokenizerSkeleton(tokenizer_dict) |
|
self.additional_kwargs = {} |
|
|
|
def converted(self) -> Tokenizer: |
|
vocab = {word: i for i, word in enumerate(self.original_tokenizer.tokens)} |
|
merges = self.original_tokenizer.merges |
|
tokenizer = super().converted(vocab, merges) |
|
return tokenizer |
|
|
|
|
|
GGUF_TO_FAST_CONVERTERS = { |
|
"llama": GGUFLlamaConverter, |
|
"qwen2": GGUFQwen2Converter, |
|
"qwen2_moe": GGUFQwen2Converter, |
|
"phi3": GGUFPhi3Converter, |
|
"bloom": GGUFGPTConverter, |
|
"falcon": GGUFGPTConverter, |
|
"stablelm": GGUFGPTConverter, |
|
"gpt2": GGUFGPTConverter, |
|
"starcoder2": GGUFGPTConverter, |
|
} |
|
|
|
|
|
def convert_gguf_tokenizer(architecture, tokenizer_dict) -> Tokenizer: |
|
""" |
|
Utilities to convert a slow tokenizer instance in a fast tokenizer instance. |
|
|
|
Args: |
|
architecture (`str`): The model architecture derived from gguf file. |
|
transformer_tokenizer ([`~tokenization_utils_base.PreTrainedTokenizer`]): |
|
Instance of a slow tokenizer to convert in the backend tokenizer for |
|
[`~tokenization_utils_base.PreTrainedTokenizerFast`]. |
|
|
|
Return: |
|
A instance of [`~tokenizers.Tokenizer`] to be used as the backend tokenizer of a |
|
[`~tokenization_utils_base.PreTrainedTokenizerFast`] |
|
""" |
|
tokenizer_class_name = architecture |
|
converter = GGUF_TO_FAST_CONVERTERS[tokenizer_class_name](tokenizer_dict) |
|
fast_tokenizer = converter.converted() |
|
return fast_tokenizer, converter.additional_kwargs |
|
|